-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathneural_network.py
312 lines (259 loc) · 13.1 KB
/
neural_network.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
import numpy as np
import matplotlib.pyplot as plt
from activations import relu, sigmoid, backprop_sigmoid_unit, backprop_relu_unit, softmax
class NeuralNetworkImpl:
def __init__(self, layer_sizes,
layer_activations,
optimization_algorithm='sgd',
alpha=0.01,
epochs=10000,
mini_batch_size=64,
regularization=0.0001,
momentum_beta=0.9,
adam_beta1=0.9,
adam_beta2=0.999,
adam_epsilon=1e-8,
rmsprop_beta1=0.9,
rmsprop_epsilon=1e-8,
plot_loss=True):
self.layers_count = len(layer_sizes)
self.layer_sizes = layer_sizes
self.layer_activations = layer_activations
self.optimization_algorithm = optimization_algorithm
self.alpha = alpha
self.epochs = epochs
self.mini_batch_size = mini_batch_size
self.regularization = regularization
self.momentum_beta = momentum_beta
self.adam_beta1 = adam_beta1
self.adam_beta2 = adam_beta2
self.adam_epsilon = adam_epsilon
self.rmsprop_beta1 = rmsprop_beta1
self.rmsprop_epsilon = rmsprop_epsilon
self.plot_loss = plot_loss
self.last_layer_activation = self.layer_activations[self.layers_count - 1]
def train(self, train_X, train_Y):
n, m = train_X.shape
num_params = self.__initialize_params(n)
print("Parameters to train: {}".format(num_params))
self.__initialize_optimizer()
costs = []
for i in range(self.epochs):
permutation = list(np.random.permutation(m))
shuffled_X = train_X[:, permutation]
shuffled_Y = train_Y[:, permutation].reshape((train_Y.shape[0], m))
epoch_costs = []
epoch_accuracies = []
accuracy = 0.0
for j in range(0, m, self.mini_batch_size):
batch_X = shuffled_X[:, j:j+self.mini_batch_size]
batch_Y = shuffled_Y[:, j:j+self.mini_batch_size]
y_hat = self.__forward_propagation(batch_X)
cost = self.__compute_cost(y_hat, batch_Y)
epoch_costs.append(cost)
self.__backward_propagation(y_hat, batch_X, batch_Y)
if i % 10 == 0 and j == 0:
if self.last_layer_activation == 'sigmoid':
accuracy = self.__logistic_accuracy(y_hat, batch_Y)
elif self.last_layer_activation == 'softmax':
accuracy = self.__multilabel_accuracy(y_hat, batch_Y)
if i % 10 == 0:
epoch_cost = np.average(epoch_costs)
print("=== iteration {}, cost: {}, accuracy: {}".format(i, epoch_cost, accuracy))
costs.append(epoch_cost)
# plot the cost
if self.plot_loss:
plt.plot(costs)
plt.ylabel('cost')
plt.xlabel('epochs')
plt.title("Learning rate = " + str(self.alpha))
plt.show()
def __logistic_accuracy(self, y_hat, y):
predictions = np.zeros(y.shape)
for k in range(y.shape[1]):
if y_hat[0,k] > 0.5:
predictions[0,k] = 1
else:
predictions[0,k] = 0
return np.sum((predictions == y) / y.shape[1])
def __multilabel_accuracy(self, y_hat, y):
predictions = np.zeros(y.shape)
argmax_y_hat = np.argmax(y_hat, axis=0)
argmax_y = np.argmax(y, axis=0)
return np.sum((argmax_y_hat == argmax_y) / y.shape[1])
def __initialize_params(self, features_count):
number_params_to_train = 0
np.random.seed(12)
self.w = [ self.__layer_weights_initialization(features_count, self.layer_sizes[0]) ]
self.b = [ np.zeros((self.layer_sizes[0], 1)) ]
# Sum for W and b for the first layer
number_params_to_train += (features_count + 1) * self.layer_sizes[0]
for i in range(1, self.layers_count):
self.w.append(self.__layer_weights_initialization(self.layer_sizes[i-1], self.layer_sizes[i]))
self.b.append(np.zeros((self.layer_sizes[i], 1)))
# Sum for W and b for this layer
number_params_to_train += (self.layer_sizes[i-1] + 1) * self.layer_sizes[i]
return number_params_to_train
def __initialize_optimizer(self):
if self.optimization_algorithm == 'sgd':
pass # Do nothing
elif self.optimization_algorithm == 'momentum':
self.__initialize_momentum_optimizer()
elif self.optimization_algorithm == 'adam':
self.__initialize_adam_optimizer()
elif self.optimization_algorithm == 'rmsprop':
self.__initialize_rmsprop_optimizer()
else:
raise "Invalid optimization algorithm: {}".format(self.optimization_algorithm)
def __initialize_momentum_optimizer(self):
self.momentum_velocity_w = []
self.momentum_velocity_b = []
for l in range(self.layers_count):
self.momentum_velocity_w.append(np.zeros(self.w[l].shape))
self.momentum_velocity_b.append(np.zeros(self.b[l].shape))
def __initialize_adam_optimizer(self):
self.adam_counter = 0
self.adamv_w = []
self.adamv_b = []
self.adams_w = []
self.adams_b = []
for l in range(self.layers_count):
self.adamv_w.append(np.zeros(self.w[l].shape))
self.adamv_b.append(np.zeros(self.b[l].shape))
self.adams_w.append(np.zeros(self.w[l].shape))
self.adams_b.append(np.zeros(self.b[l].shape))
def __initialize_rmsprop_optimizer(self):
self.rmsprop_w = []
self.rmsprop_b = []
for l in range(self.layers_count):
self.rmsprop_w.append(np.zeros(self.w[l].shape))
self.rmsprop_b.append(np.zeros(self.b[l].shape))
def __layer_weights_initialization(self, prev_layer, curr_layer):
return np.random.randn(curr_layer, prev_layer) * np.sqrt(2 / prev_layer)
def __forward_propagation(self, x):
self.cached_a = []
self.cached_z = []
a_prev = x
for i in range(self.layers_count):
a, z = self.__one_layer_forward_prop(a_prev, i, self.layer_activations[i])
self.cached_a.append(a)
self.cached_z.append(z)
a_prev = a
return a_prev
def __one_layer_forward_prop(self, a_prev, layer_index, activation):
z = np.dot(self.w[layer_index], a_prev) + self.b[layer_index]
if activation == 'relu':
return relu(z), z
elif activation == 'sigmoid':
return sigmoid(z), z
elif activation == 'softmax':
return softmax(z), z
else:
raise "Invalid activation: {}".format(activation)
def __compute_cost(self, y_hat, y):
_, m = y.shape
regularization_cost = 0
for i in range(self.layers_count):
regularization_cost += np.linalg.norm(self.w[i])
cost = 0.0
if self.last_layer_activation == 'sigmoid':
# When last layer's activation is sigmoid assume binary classification
cost = (-1 / m) * np.sum(y * np.log(y_hat) + (1 - y) * np.log(1 - y_hat)) + (self.regularization / (2 * m)) * regularization_cost
elif self.last_layer_activation == 'softmax':
# When last layer's activation is softmax assume multi-class classification
cost = (-1 / m) * np.sum(y * np.log(y_hat)) + (self.regularization / (2 * m)) * regularization_cost
else:
raise "Invalid last layer activation: {}".format(self.last_layer_activation)
return np.squeeze(cost)
def __one_layer_backward_prop(self, y_hat, x, y, prev_dz, layer_index):
_, m = y.shape
if layer_index == 0:
prev_a = x
else:
prev_a = self.cached_a[layer_index - 1]
if layer_index == self.layers_count - 1:
# In this implementation of a neural network we will always use some
# form of cross-entropy loss (logistic loss) and in both cases when we
# have either binary classification or multi-label classification the
# derivative of this loss function with respect to the values computed
# before the activation is y_hat - y.
# https://math.stackexchange.com/questions/945871/derivative-of-softmax-loss-function
if self.last_layer_activation not in ['sigmoid', 'softmax']:
raise "Invalid last layer activation: {}".format(self.last_layer_activation)
dz = y_hat - y
else:
da = np.dot(self.w[layer_index+1].T, prev_dz)
if self.layer_activations[layer_index] == 'relu':
dz = da * backprop_relu_unit(self.cached_z[layer_index])
elif self.layer_activations[layer_index] == 'sigmoid':
dz = da * backprop_sigmoid_unit(self.cached_z[layer_index])
else:
raise "Not supported layer activation: {}".format(self.layer_activations[layer_index])
dw = (1 / m) * np.dot(dz, prev_a.T) + (self.regularization / m) * self.w[layer_index]
db = (1 / m) * np.sum(dz, axis=1, keepdims=True)
return dz, dw, db
def __backward_propagation(self, y_hat, x, y):
dz = [None] * self.layers_count
dw = [None] * self.layers_count
db = [None] * self.layers_count
for i in reversed(range(self.layers_count)):
prev_dz = None
if i < self.layers_count - 1:
prev_dz = dz[i + 1]
dz[i], dw[i], db[i] = self.__one_layer_backward_prop(y_hat, x, y, prev_dz, i)
# Update the params
self.__update_parameters(dw, db)
def __update_parameters(self, dw, db):
if self.optimization_algorithm == 'sgd':
self.__update_parameters_with_sgd(dw, db)
elif self.optimization_algorithm == 'momentum':
self.__update_parameters_with_momentum(dw, db)
elif self.optimization_algorithm == 'adam':
self.__update_parameters_with_adam(dw, db)
elif self.optimization_algorithm == 'rmsprop':
self.__update_parameters_with_rmsprop(dw, db)
else:
raise "Invalid optimization algorithm: {}".format(self.optimization_algorithm)
def __update_parameters_with_sgd(self, dw, db):
for i in range(self.layers_count):
self.w[i] = self.w[i] - self.alpha * dw[i]
self.b[i] = self.b[i] - self.alpha * db[i]
def __update_parameters_with_momentum(self, dw, db):
for i in range(self.layers_count):
self.momentum_velocity_w[i] = self.momentum_beta * self.momentum_velocity_w[i] + (1 - self.momentum_beta) * dw[i]
self.momentum_velocity_b[i] = self.momentum_beta * self.momentum_velocity_b[i] + (1 - self.momentum_beta) * db[i]
self.w[i] = self.w[i] - self.alpha * self.momentum_velocity_w[i]
self.b[i] = self.b[i] - self.alpha * self.momentum_velocity_b[i]
def __update_parameters_with_adam(self, dw, db):
self.adam_counter += 1
for i in range(self.layers_count):
self.adamv_w[i] = self.adam_beta1 * self.adamv_w[i] + (1 - self.adam_beta1) * dw[i]
adamv_corrw = self.adamv_w[i] / (1 - self.adam_beta1 ** self.adam_counter)
self.adamv_b[i] = self.adam_beta1 * self.adamv_b[i] + (1 - self.adam_beta1) * db[i]
adamv_corrb = self.adamv_b[i] / (1 - self.adam_beta1 ** self.adam_counter)
self.adams_w[i] = self.adam_beta2 * self.adams_w[i] + (1 - self.adam_beta2) * (dw[i] * dw[i])
adams_corrw = self.adams_w[i] / (1 - self.adam_beta2 ** self.adam_counter)
self.adams_b[i] = self.adam_beta2 * self.adams_b[i] + (1 - self.adam_beta2) * (db[i] * db[i])
adams_corrb = self.adams_b[i] / (1 - self.adam_beta2 ** self.adam_counter)
self.w[i] = self.w[i] - self.alpha * (adamv_corrw / (np.sqrt(adams_corrw) + self.adam_epsilon))
self.b[i] = self.b[i] - self.alpha * (adamv_corrb / (np.sqrt(adams_corrb) + self.adam_epsilon))
def __update_parameters_with_rmsprop(self, dw, db):
for i in range(self.layers_count):
self.rmsprop_w[i] = self.rmsprop_beta1 * self.rmsprop_w[i] + (1 - self.rmsprop_beta1) * (dw[i] * dw[i])
self.rmsprop_b[i] = self.rmsprop_beta1 * self.rmsprop_b[i] + (1 - self.rmsprop_beta1) * (db[i] * db[i])
self.w[i] = self.w[i] - self.alpha * (dw[i] / (np.sqrt(self.rmsprop_w[i]) + self.rmsprop_epsilon))
self.b[i] = self.b[i] - self.alpha * (db[i] / (np.sqrt(self.rmsprop_b[i]) + self.rmsprop_epsilon))
def predict(self, X):
a = self.__forward_propagation(X)
if self.last_layer_activation == 'sigmoid':
return a > 0.5
elif self.last_layer_activation == 'softmax':
predictions = np.zeros(a.shape)
max_indexes = np.argmax(a, axis=0)
for i in range(predictions.shape[1]):
predictions[max_indexes[i],i] = 1
return predictions
else:
raise "Invalid last layer activation: {}".format(self.last_layer_activation)
def predict_raw(self, X):
return self.__forward_propagation(X)