class myCallback(tf.keras.callbacks.Callback):
def on_epoch_end(self, epoch, logs={})
if(longs.get('loss')<0.05):
print('n\Loss is low so cancelling training!')
self.model.stop_training=True
import tensorflow as tf
callbacks=myCallback()
mnist = tf.keras.datasets.fashion_mnist
(training_images, training_labels), (test_images, test_labels) = mnist.load_data()
training_images = training_images / 255.0
test_images = test_images / 255.0
model = tf.keras.models.Sequential([tf.keras.layers.Flatten(),
tf.keras.layers.Dense(128, activation=tf.nn.relu),
tf.keras.layers.Dense(10, activation=tf.nn.softmax)])
model.compile(optimizer = tf.train.AdamOptimizer(),
loss = 'sparse_categorical_crossentropy',
metrics=['accuracy'])
model.fit(training_images, training_labels, epochs=50, callbacks=[callbacks])
Callback on mnist FFNN
import tensorflow as tf
mnist = tf.keras.datasets.mnist
class mnistCallback(tf.keras.callbacks.Callback):
def on_epoch_end(self, epoch, logs={}):
if (logs.get('acc')>0.99):
print('stopped because acc is >0.99')
self.model.stop_training=True
(x_train, y_train),(x_test, y_test) = mnist.load_data()
x_train, x_test=x_train/255.0, x_test/255.0
model = tf.keras.models.Sequential([
tf.keras.layers.Flatten(input_shape=(28,28)),
tf.keras.layers.Dense(512, activation=tf.nn.relu),
tf.keras.layers.Dense(10, activation=tf.nn.softmax)
])
callbacks=mnistCallback()
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
model.fit(x_train,y_train, epochs=10, callbacks=[callbacks])