|
| 1 | +# |
| 2 | +# For licensing see accompanying LICENSE file. |
| 3 | +# Copyright (C) 2021 Apple Inc. All Rights Reserved. |
| 4 | +# |
| 5 | + |
| 6 | +from argparse import ArgumentParser |
| 7 | +import json |
| 8 | +import logging |
| 9 | +from multiprocessing import Pool |
| 10 | +from pathlib import Path |
| 11 | +from typing import Dict, List, Tuple |
| 12 | + |
| 13 | +from evaluate_qa import compute_exact, compute_f1 |
| 14 | +from span_heuristic import find_closest_span_match |
| 15 | + |
| 16 | +""" |
| 17 | +Functions for evaluating passage retrieval. |
| 18 | +
|
| 19 | +This is used to compute MRR (mean reciprocal rank), Recall@10, and Recall@100 in Table 5 of the paper. |
| 20 | +""" |
| 21 | + |
| 22 | + |
| 23 | +RELEVANCE_THRESHOLD = 0.8 |
| 24 | + |
| 25 | + |
| 26 | +def compute_f1_for_retrieved_passage(line: str) -> dict: |
| 27 | + """ |
| 28 | + Given a serialized JSON line, with fields 'content' and 'answer', find the closest span matching answer, |
| 29 | + update the deserialized dict with the span and F1 score, and return the dict. |
| 30 | + """ |
| 31 | + data = json.loads(line) |
| 32 | + content, answer = data['content'], data['answer'] |
| 33 | + |
| 34 | + # If there is no answer, although the closest extractive answer is '', in the MRR and recall@k functions below |
| 35 | + # we do not count any passage for these questions as relevant. |
| 36 | + if len(answer) < 1: |
| 37 | + data['heuristic_answer'] = '' |
| 38 | + data['f1'] = compute_f1(answer, '') |
| 39 | + return data |
| 40 | + |
| 41 | + best_span, best_f1 = find_closest_span_match(content, answer) |
| 42 | + |
| 43 | + data['heuristic_answer'] = best_span |
| 44 | + data['f1'] = best_f1 |
| 45 | + |
| 46 | + return data |
| 47 | + |
| 48 | + |
| 49 | +def compute_mean_reciprocal_rank( |
| 50 | + question_id_to_docs: Dict[str, List[dict]], relevance_threshold: float |
| 51 | +) -> float: |
| 52 | + """Given a dictionary mapping a question id to a list of docs, find the mean reciprocal rank.""" |
| 53 | + recip_rank_sum = 0 |
| 54 | + for qid, docs in question_id_to_docs.items(): |
| 55 | + top_rank = float('inf') |
| 56 | + for doc in docs: |
| 57 | + if len(doc['answer']) > 0 and doc['f1'] >= relevance_threshold: |
| 58 | + top_rank = min(top_rank, doc['rank']) |
| 59 | + |
| 60 | + recip_rank = 1 / top_rank if top_rank != float('inf') else 0 |
| 61 | + recip_rank_sum += recip_rank |
| 62 | + |
| 63 | + return recip_rank_sum / len(question_id_to_docs) |
| 64 | + |
| 65 | + |
| 66 | +def compute_recall_at_k( |
| 67 | + question_id_to_docs: Dict[str, List[dict]], k: int, relevance_threshold: float |
| 68 | +) -> float: |
| 69 | + """ |
| 70 | + Given a dictionary mapping a question id to a list of docs, find the recall@k. |
| 71 | +
|
| 72 | + We define recall@k = 1.0 if any document in the top-k is relevant, and 0 otherwise. |
| 73 | + """ |
| 74 | + relevant_doc_found_total = 0 |
| 75 | + for qid, docs in question_id_to_docs.items(): |
| 76 | + relevant_doc_found = 0 |
| 77 | + for doc in docs: |
| 78 | + if len(doc['answer']) > 0 and doc['f1'] >= relevance_threshold and doc['rank'] <= k: |
| 79 | + relevant_doc_found = 1 |
| 80 | + break |
| 81 | + |
| 82 | + relevant_doc_found_total += relevant_doc_found |
| 83 | + |
| 84 | + return relevant_doc_found_total / len(question_id_to_docs) |
| 85 | + |
| 86 | + |
| 87 | +def compute_extractive_upper_bounds( |
| 88 | + question_id_to_docs: Dict[str, List[dict]], temp_files_directory: Path |
| 89 | +) -> Tuple[float, float]: |
| 90 | + """Given a dictionary mapping a question id to a list of docs, find the extractive upper bounds of (EM, F1).""" |
| 91 | + total_em, total_f1 = 0, 0.0 |
| 92 | + with open(temp_files_directory / 'retrieved-passages-relevant-f1.jsonl', 'w') as outfile: |
| 93 | + for qid, docs in question_id_to_docs.items(): |
| 94 | + best_em, best_f1 = 0, 0.0 |
| 95 | + best_doc = docs[0] |
| 96 | + for doc in docs: |
| 97 | + em = compute_exact(doc['answer'], doc['heuristic_answer']) |
| 98 | + f1 = compute_f1(doc['answer'], doc['heuristic_answer']) |
| 99 | + if f1 > best_f1: |
| 100 | + best_doc = doc |
| 101 | + best_em = max(best_em, em) |
| 102 | + best_f1 = max(best_f1, f1) |
| 103 | + if best_em == 1 and best_f1 == 1.0: |
| 104 | + break |
| 105 | + |
| 106 | + total_em += best_em |
| 107 | + total_f1 += best_f1 |
| 108 | + |
| 109 | + outfile.write(json.dumps(best_doc) + '\n') |
| 110 | + |
| 111 | + return ( |
| 112 | + total_em / len(question_id_to_docs), |
| 113 | + total_f1 / len(question_id_to_docs), |
| 114 | + ) |
| 115 | + |
| 116 | + |
| 117 | +def get_unique_relevant_docs_count( |
| 118 | + question_id_to_docs: Dict[str, List[dict]], relevance_threshold: float |
| 119 | +) -> float: |
| 120 | + """Given a dictionary mapping a question id to a list of docs, find the number of unique relevant docs.""" |
| 121 | + unique_relevant_docs = set() |
| 122 | + for qid, docs in question_id_to_docs.items(): |
| 123 | + for doc in docs: |
| 124 | + if len(doc['answer']) > 0 and doc['f1'] >= relevance_threshold: |
| 125 | + unique_relevant_docs.add(doc['docid']) |
| 126 | + |
| 127 | + return len(unique_relevant_docs) |
| 128 | + |
| 129 | + |
| 130 | +def get_average_relevant_docs_per_question( |
| 131 | + question_id_to_docs: Dict[str, List[dict]], relevance_threshold: float |
| 132 | +) -> float: |
| 133 | + """Given a dictionary mapping a question id to a list of docs, find the average number of relevant docs per question.""" |
| 134 | + relevant_docs = 0 |
| 135 | + for qid, docs in question_id_to_docs.items(): |
| 136 | + for doc in docs: |
| 137 | + if len(doc['answer']) > 0 and doc['f1'] >= relevance_threshold: |
| 138 | + relevant_docs += 1 |
| 139 | + |
| 140 | + return relevant_docs / len(question_id_to_docs) |
| 141 | + |
| 142 | + |
| 143 | +def main(retrieved_passages_pattern: str, temp_files_directory: str, workers: int): |
| 144 | + retrieved_passages_files = Path().glob(retrieved_passages_pattern) |
| 145 | + temp_files_directory = Path(temp_files_directory) |
| 146 | + temp_files_directory.mkdir(exist_ok=True, parents=True) |
| 147 | + |
| 148 | + question_id_to_docs = {} |
| 149 | + |
| 150 | + for retrieved_passages_file in retrieved_passages_files: |
| 151 | + with open(retrieved_passages_file) as infile: |
| 152 | + with Pool(workers) as p: |
| 153 | + for i, passage_results in enumerate( |
| 154 | + p.imap(compute_f1_for_retrieved_passage, infile) |
| 155 | + ): |
| 156 | + if (i + 1) % 5000 == 0: |
| 157 | + logging.info( |
| 158 | + f'Processing {retrieved_passages_file.name}, {i + 1} lines done...' |
| 159 | + ) |
| 160 | + |
| 161 | + qid = f"{passage_results['Conversation-ID']}_{passage_results['Turn-ID']}" |
| 162 | + if qid not in question_id_to_docs: |
| 163 | + question_id_to_docs[qid] = [] |
| 164 | + |
| 165 | + question_id_to_docs[qid].append( |
| 166 | + { |
| 167 | + 'Conversation-ID': passage_results['Conversation-ID'], |
| 168 | + 'Turn-ID': passage_results['Turn-ID'], |
| 169 | + 'docid': passage_results['docid'], |
| 170 | + 'content': passage_results['content'], |
| 171 | + 'rank': passage_results['rank'], |
| 172 | + 'answer': passage_results['answer'], |
| 173 | + 'heuristic_answer': passage_results['heuristic_answer'], |
| 174 | + 'f1': passage_results['f1'], |
| 175 | + } |
| 176 | + ) |
| 177 | + |
| 178 | + print('Final metrics:') |
| 179 | + unique_relevant_docs = get_unique_relevant_docs_count(question_id_to_docs, RELEVANCE_THRESHOLD) |
| 180 | + unique_docs_perfect_f1 = get_unique_relevant_docs_count(question_id_to_docs, 1.0) |
| 181 | + avg_relevant_docs_per_question = get_average_relevant_docs_per_question( |
| 182 | + question_id_to_docs, 1.0 |
| 183 | + ) |
| 184 | + |
| 185 | + print(f'Total number of unique queries: {len(question_id_to_docs)}') |
| 186 | + print(f'Total number of unique relevant docs: {unique_relevant_docs}') |
| 187 | + print(f'Total number of unique docs with F1=1.0: {unique_docs_perfect_f1}') |
| 188 | + print(f'Average number of relevant docs per query: {avg_relevant_docs_per_question}') |
| 189 | + |
| 190 | + mrr = compute_mean_reciprocal_rank(question_id_to_docs, RELEVANCE_THRESHOLD) |
| 191 | + recall_at_10 = compute_recall_at_k(question_id_to_docs, 10, RELEVANCE_THRESHOLD) |
| 192 | + recall_at_100 = compute_recall_at_k(question_id_to_docs, 100, RELEVANCE_THRESHOLD) |
| 193 | + print(f'Mean Reciprocal Rank (MRR): {mrr:.4f}') |
| 194 | + print(f'Recall@10: {recall_at_10 * 100:.2f}%') |
| 195 | + print(f'Recall@100: {recall_at_100 * 100:.2f}%') |
| 196 | + |
| 197 | + em_upper_bound, f1_upper_bound = compute_extractive_upper_bounds( |
| 198 | + question_id_to_docs, temp_files_directory |
| 199 | + ) |
| 200 | + print(f'Extractive Upper Bound for EM (100 point scale): {em_upper_bound * 100:.2f}') |
| 201 | + print(f'Extractive Upper Bound for F1 (100 point scale): {f1_upper_bound * 100:.2f}') |
| 202 | + |
| 203 | + |
| 204 | +if __name__ == '__main__': |
| 205 | + parser = ArgumentParser(description='Passage retrieval evaluation') |
| 206 | + parser.add_argument( |
| 207 | + '--retrieved-passages-pattern', |
| 208 | + required=True, |
| 209 | + help="""A globbing pattern to select .jsonl files containing retrieved passages. |
| 210 | + Each json line should contain the fields 'Conversation-ID', 'Turn-ID', 'docid', 'content', 'answer', 'rank'. |
| 211 | + 'answer' is the gold answer given in the QReCC dataset and rank is the rank of the document starting from 1.""", |
| 212 | + ) |
| 213 | + parser.add_argument( |
| 214 | + '--temp-files-directory', |
| 215 | + default='/tmp/qrecc-retrieval-eval', |
| 216 | + help='Directory to store temporary files containing F1 scores, which can be used for debugging and analysis', |
| 217 | + ) |
| 218 | + parser.add_argument( |
| 219 | + '--workers', default=8, type=int, help='Number of workers for parallel processing', |
| 220 | + ) |
| 221 | + args = parser.parse_args() |
| 222 | + |
| 223 | + logging.basicConfig(level=logging.INFO) |
| 224 | + |
| 225 | + main(args.retrieved_passages_pattern, args.temp_files_directory, args.workers) |
0 commit comments