Open
Description
NOTE: ISSUES ARE NOT FOR CODE HELP - Ask for Help at https://stackoverflow.com
Your issue may already be reported!
Also, please search on the issue tracker before creating one.
- I'm submitting a ...
- bug reportfeature requestsupport request => Please do not submit support request here, see note at the top of this template.
Issue Description
When running the example code provided on the README file, the api.score
function throws an exception during an internal call due to missing arguments.
Expected Behavior
A score value to be calculated based on the predictions and actual values.
Current Behavior
A TypeError is thrown due to an internal call in the score
function.
Your Code
from autoPyTorch.api.time_series_forecasting import TimeSeriesForecastingTask
# data and metric imports
from sktime.datasets import load_longley
targets, features = load_longley()
# define the forecasting horizon
forecasting_horizon = 3
# Dataset optimized by APT-TS can be a list of np.ndarray/ pd.DataFrame where each series represents an element in the
# list, or a single pd.DataFrame that records the series
# index information: to which series the timestep belongs? This id can be stored as the DataFrame's index or a separate
# column
# Within each series, we take the last forecasting_horizon as test targets. The items before that as training targets
# Normally the value to be forecasted should follow the training sets
y_train = [targets[: -forecasting_horizon]]
y_test = [targets[-forecasting_horizon:]]
# same for features. For uni-variant models, X_train, X_test can be omitted and set as None
X_train = [features[: -forecasting_horizon]]
# Here x_test indicates the 'known future features': they are the features known previously, features that are unknown
# could be replaced with NAN or zeros (which will not be used by our networks). If no feature is known beforehand,
# we could also omit X_test
known_future_features = list(features.columns)
X_test = [features[-forecasting_horizon:]]
start_times = [targets.index.to_timestamp()[0]]
freq = '1Y'
# initialise Auto-PyTorch api
api = TimeSeriesForecastingTask()
# Search for an ensemble of machine learning algorithms
api.search(
X_train=X_train,
y_train=y_train,
X_test=X_test,
optimize_metric='mean_MAPE_forecasting',
n_prediction_steps=forecasting_horizon,
memory_limit=16 * 1024, # Currently, forecasting models use much more memories
freq=freq,
start_times=start_times,
func_eval_time_limit_secs=50,
total_walltime_limit=60,
min_num_test_instances=1000, # proxy validation sets. This only works for the tasks with more than 1000 series
known_future_features=known_future_features,
)
# our dataset could directly generate sequences for new datasets
test_sets = api.dataset.generate_test_seqs()
# Calculate test accuracy
y_pred = api.predict(test_sets)
score = api.score(y_pred, y_test)
print("Forecasting score", score)
Error message
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-2-4599e5448863> in <module>
52 # Calculate test accuracy
53 y_pred = api.predict(test_sets)
---> 54 score = api.score(y_pred, y_test)
55 print("Forecasting score", score)
/usr/local/lib/python3.8/dist-packages/autoPyTorch/api/base_task.py in score(self, y_pred, y_test)
1908 raise ValueError("AutoPytorch failed to infer a task type from the dataset "
1909 "Please check the log file for related errors. ")
-> 1910 return calculate_score(target=y_test, prediction=y_pred,
1911 task_type=STRING_TO_TASK_TYPES[self.task_type],
1912 metrics=[self._metric])
/usr/local/lib/python3.8/dist-packages/autoPyTorch/pipeline/components/training/metrics/utils.py in calculate_score(target, prediction, task_type, metrics, **score_kwargs)
144 score_dict[metric_.name] = metric_._sign * metric_(target_scaled, cprediction_scaled, **score_kwargs)
145 else:
--> 146 score_dict[metric_.name] = metric_._sign * metric_(target, cprediction, **score_kwargs)
147 elif task_type in REGRESSION_TASKS:
148 cprediction = sanitize_array(prediction)
TypeError: __call__() missing 2 required positional arguments: 'sp' and 'n_prediction_steps'
Local environment
- Google Colab Compute Engine with GPU
- Python 3.8.15
pip freeze
absl-py==1.3.0
aeppl==0.0.33
aesara==2.7.9
aiohttp==3.8.3
aiosignal==1.3.1
alabaster==0.7.12
albumentations==1.2.1
alembic==1.8.1
altair==4.2.0
appdirs==1.4.4
arviz==0.12.1
astor==0.8.1
astropy==4.3.1
astunparse==1.6.3
async-timeout==4.0.2
asynctest==0.13.0
atari-py==0.2.9
atomicwrites==1.4.1
attrs==22.1.0
audioread==3.0.0
autograd==1.5
autopage==0.5.1
autoPyTorch==0.2.1
Babel==2.11.0
backcall==0.2.0
beautifulsoup4==4.6.3
bleach==5.0.1
blis==0.7.9
bokeh==2.3.3
branca==0.6.0
bs4==0.0.1
CacheControl==0.12.11
cached-property==1.5.2
cachetools==5.2.0
catalogue==2.0.8
catboost==1.1.1
certifi==2022.9.24
cffi==1.15.1
cftime==1.6.2
chardet==3.0.4
charset-normalizer==2.1.1
click==8.1.3
cliff==4.1.0
clikit==0.6.2
cloudpickle==2.2.0
cmaes==0.9.0
cmake==3.22.6
cmd2==2.4.2
cmdstanpy==1.0.8
colorcet==3.0.1
colorlog==6.7.0
colorlover==0.3.0
community==1.0.0b1
confection==0.0.3
ConfigSpace==0.6.0
cons==0.4.5
contextlib2==0.5.5
contourpy==1.0.6
convertdate==2.4.0
crashtest==0.3.1
crcmod==1.7
cufflinks==0.17.3
cupy-cuda11x==11.0.0
cvxopt==1.3.0
cvxpy==1.2.2
cycler==0.11.0
cymem==2.0.7
Cython==0.29.32
daft==0.0.4
dask==2022.12.0
datascience==0.17.5
db-dtypes==1.0.4
debugpy==1.0.0
decorator==4.4.2
defusedxml==0.7.1
Deprecated==1.2.13
descartes==1.1.0
dill==0.3.6
distributed==2022.12.0
dlib==19.24.0
dm-tree==0.1.7
dnspython==2.2.1
docutils==0.17.1
dopamine-rl==1.0.5
earthengine-api==0.1.332
easydict==1.10
ecos==2.0.10
editdistance==0.5.3
emcee==3.1.3
en-core-web-sm @ https://github.com/explosion/spacy-models/releases/download/en_core_web_sm-3.4.1/en_core_web_sm-3.4.1-py3-none-any.whl
entrypoints==0.4
ephem==4.1.3
et-xmlfile==1.1.0
etils==0.9.0
etuples==0.3.8
fa2==0.3.5
fastai==2.7.10
fastcore==1.5.27
fastdownload==0.0.7
fastdtw==0.3.4
fastjsonschema==2.16.2
fastprogress==1.0.3
fastrlock==0.8.1
feather-format==0.4.1
filelock==3.8.0
fire==0.4.0
firebase-admin==5.3.0
fix-yahoo-finance==0.0.22
flaky==3.7.0
Flask==1.1.4
flatbuffers==1.12
folium==0.12.1.post1
fonttools==4.38.0
frozenlist==1.3.3
fsspec==2022.11.0
future==0.16.0
gast==0.4.0
GDAL==2.2.2
gdown==4.4.0
gensim==3.6.0
geographiclib==1.52
geopy==1.17.0
gin-config==0.5.0
glob2==0.7
gluonts==0.11.3
google==2.0.3
google-api-core==2.8.2
google-api-python-client==1.12.11
google-auth==2.15.0
google-auth-httplib2==0.0.4
google-auth-oauthlib==0.4.6
google-cloud-bigquery==3.3.6
google-cloud-bigquery-storage==2.16.2
google-cloud-core==2.3.2
google-cloud-datastore==2.9.0
google-cloud-firestore==2.7.2
google-cloud-language==2.6.1
google-cloud-storage==2.5.0
google-cloud-translate==3.8.4
google-colab @ file:///colabtools/dist/google-colab-1.0.0.tar.gz
google-crc32c==1.5.0
google-pasta==0.2.0
google-resumable-media==2.4.0
googleapis-common-protos==1.57.0
googledrivedownloader==0.4
graphviz==0.20.1
greenlet==2.0.1
grpcio==1.51.1
grpcio-status==1.48.2
gspread==3.4.2
gspread-dataframe==3.0.8
gym==0.25.2
gym-notices==0.0.8
h5py==3.1.0
HeapDict==1.0.1
hijri-converter==2.2.4
holidays==0.17
holoviews==1.14.9
html5lib==1.0.1
httpimport==0.5.18
httplib2==0.17.4
httpstan==4.6.1
humanize==0.5.1
hyperopt==0.1.2
idna==3.4
imageio==2.22.4
imagesize==1.4.1
imbalanced-learn==0.8.1
imblearn==0.0
imgaug==0.4.0
importlib-metadata==5.1.0
importlib-resources==5.10.0
imutils==0.5.4
inflect==2.1.0
intel-openmp==2022.2.1
intervaltree==2.1.0
ipykernel==5.3.4
ipython==7.9.0
ipython-genutils==0.2.0
ipython-sql==0.3.9
ipywidgets==7.7.1
itsdangerous==1.1.0
jax==0.3.25
jaxlib @ https://storage.googleapis.com/jax-releases/cuda11/jaxlib-0.3.25+cuda11.cudnn805-cp38-cp38-manylinux2014_x86_64.whl
jieba==0.42.1
Jinja2==3.1.2
joblib==1.2.0
jpeg4py==0.1.4
jsonschema==4.3.3
jupyter-client==6.1.12
jupyter-console==6.1.0
jupyter-core==4.11.2
jupyterlab-widgets==3.0.3
kaggle==1.5.12
kapre==0.3.7
keras==2.9.0
Keras-Preprocessing==1.1.2
keras-vis==0.4.1
kiwisolver==1.4.4
korean-lunar-calendar==0.3.1
langcodes==3.3.0
libclang==14.0.6
librosa==0.8.1
lightgbm==3.3.3
lightning-utilities==0.3.0
llvmlite==0.39.1
lmdb==0.99
locket==1.0.0
lockfile==0.12.2
logical-unification==0.4.5
LunarCalendar==0.0.9
lxml==4.9.1
Mako==1.2.4
Markdown==3.4.1
MarkupSafe==2.1.1
marshmallow==3.19.0
matplotlib==3.6.2
matplotlib-venn==0.11.7
miniKanren==1.0.3
missingno==0.5.1
mistune==0.8.4
mizani==0.7.3
mkl==2019.0
mlxtend==0.14.0
more-itertools==9.0.0
moviepy==0.2.3.5
mpmath==1.2.1
msgpack==1.0.4
multidict==6.0.3
multipledispatch==0.6.0
multitasking==0.0.11
murmurhash==1.0.9
music21==5.5.0
natsort==5.5.0
nbconvert==5.6.1
nbformat==5.7.0
netCDF4==1.6.2
networkx==2.8.8
nibabel==3.0.2
nltk==3.7
notebook==5.7.16
numba==0.56.4
numexpr==2.8.4
numpy==1.22.4
nvidia-cublas-cu11==11.10.3.66
nvidia-cuda-nvrtc-cu11==11.7.99
nvidia-cuda-runtime-cu11==11.7.99
nvidia-cudnn-cu11==8.5.0.96
oauth2client==4.1.3
oauthlib==3.2.2
okgrade==0.4.3
opencv-contrib-python==4.6.0.66
opencv-python==4.6.0.66
opencv-python-headless==4.6.0.66
openpyxl==3.0.10
opt-einsum==3.3.0
optuna==2.10.1
osqp==0.6.2.post0
packaging==21.3
palettable==3.3.0
pandas==1.5.2
pandas-datareader==0.9.0
pandas-gbq==0.17.9
pandas-profiling==1.4.1
pandocfilters==1.5.0
panel==0.12.1
param==1.12.2
parso==0.8.3
partd==1.3.0
pastel==0.2.1
pathlib==1.0.1
pathy==0.9.0
patsy==0.5.3
pbr==5.11.0
pep517==0.13.0
pexpect==4.8.0
pickleshare==0.7.5
Pillow==9.3.0
pip-tools==6.2.0
plotly==5.11.0
plotnine==0.8.0
pluggy==0.7.1
pooch==1.6.0
portpicker==1.3.9
prefetch-generator==1.0.3
preshed==3.0.8
prettytable==3.5.0
progressbar2==3.38.0
prometheus-client==0.15.0
promise==2.3
prompt-toolkit==2.0.10
prophet==1.1.1
proto-plus==1.22.1
protobuf==3.20.1
psutil==5.9.4
psycopg2==2.9.5
ptyprocess==0.7.0
py==1.11.0
pyarrow==9.0.0
pyasn1==0.4.8
pyasn1-modules==0.2.8
pycocotools==2.0.6
pycparser==2.21
pyct==0.4.8
pydantic==1.10.2
pydata-google-auth==1.4.0
pydot==1.3.0
pydot-ng==2.0.0
pydotplus==2.0.2
PyDrive==1.3.1
pyemd==0.5.1
pyerfa==2.0.0.1
Pygments==2.6.1
pygobject==3.26.1
pylev==1.4.0
pymc==4.1.4
PyMeeus==0.5.11
pymongo==4.3.3
pymystem3==0.2.0
pynisher==0.6.4
PyOpenGL==3.1.6
pyparsing==3.0.9
pyperclip==1.8.2
pyrfr==0.8.3
pyrsistent==0.19.2
pysimdjson==3.2.0
pysndfile==1.3.8
PySocks==1.7.1
pystan==3.3.0
pytest==3.6.4
python-apt==0.0.0
python-dateutil==2.8.2
python-louvain==0.16
python-slugify==7.0.0
python-utils==3.4.5
pytorch-forecasting==0.10.3
pytorch-lightning==1.8.3.post1
pytz==2022.6
pyviz-comms==2.2.1
PyWavelets==1.4.1
PyYAML==6.0
pyzmq==23.2.1
qdldl==0.1.5.post2
qudida==0.0.4
regex==2022.10.31
requests==2.28.1
requests-oauthlib==1.3.1
resampy==0.4.2
rpy2==3.5.5
rsa==4.9
scikit-image==0.19.3
scikit-learn==0.24.2
scipy==1.9.3
screen-resolution-extra==0.0.0
scs==3.2.2
seaborn==0.11.2
Send2Trash==1.8.0
setuptools-git==1.2
Shapely==1.8.5.post1
six==1.16.0
sklearn-pandas==1.8.0
sktime==0.14.1
smac==1.4.0
smart-open==5.2.1
snowballstemmer==2.2.0
sortedcontainers==2.4.0
soundfile==0.11.0
spacy==3.4.3
spacy-legacy==3.0.10
spacy-loggers==1.0.3
Sphinx==1.8.6
sphinxcontrib-serializinghtml==1.1.5
sphinxcontrib-websupport==1.2.4
SQLAlchemy==1.4.44
sqlparse==0.4.3
srsly==2.4.5
statsmodels==0.13.5
stevedore==4.1.1
sympy==1.7.1
tables==3.7.0
tabulate==0.9.0
tblib==1.7.0
tenacity==8.1.0
tensorboard==2.11.0
tensorboard-data-server==0.6.1
tensorboard-plugin-wit==1.8.1
tensorboardX==2.5.1
tensorflow==2.9.2
tensorflow-datasets==4.6.0
tensorflow-estimator==2.9.0
tensorflow-gcs-config==2.9.1
tensorflow-hub==0.12.0
tensorflow-io-gcs-filesystem==0.28.0
tensorflow-metadata==1.11.0
tensorflow-probability==0.17.0
termcolor==2.1.1
terminado==0.13.3
testpath==0.6.0
text-unidecode==1.3
textblob==0.15.3
thinc==8.1.5
threadpoolctl==3.1.0
tifffile==2022.10.10
toml==0.10.2
tomli==2.0.1
toolz==0.12.0
torch==1.13.0
torchaudio @ https://download.pytorch.org/whl/cu113/torchaudio-0.12.1%2Bcu113-cp38-cp38-linux_x86_64.whl
torchmetrics==0.11.0
torchsummary==1.5.1
torchtext==0.13.1
torchvision==0.14.0
tornado==6.2
tqdm==4.64.1
traitlets==5.1.1
tweepy==3.10.0
typeguard==2.7.1
typer==0.7.0
typing-extensions==4.4.0
tzlocal==1.5.1
uritemplate==3.0.1
urllib3==1.26.13
vega-datasets==0.9.0
wasabi==0.10.1
wcwidth==0.2.5
webargs==8.2.0
webencodings==0.5.1
Werkzeug==2.2.2
widgetsnbextension==3.6.1
wordcloud==1.8.2.2
wrapt==1.14.1
xarray==0.20.2
xarray-einstats==0.2.2
xgboost==0.90
xkit==0.0.0
xlrd==1.1.0
xlwt==1.3.0
yarl==1.8.2
yellowbrick==1.5
zict==2.2.0
zipp==3.11.0
Activity
dengdifan commentedon Dec 8, 2022
Hi, Thanks for the report. We are currently working on this issue and will solve that in the next release.
ericleonardo commentedon Aug 4, 2023
Please, are you still able to run Auto-PyTorch on Google Colab?
I'm having trouble during installation on Colab. Tried many ways but doesn't install.
How did you installed it? Thanks @antbz