1
- # HPOlib2
1
+ # HPOBench
2
2
3
- HPOlib2 is a library for hyperparameter optimization and black-box optimization benchmark with a focus on reproducibility.
3
+ HPOBench is a library for hyperparameter optimization and black-box optimization benchmark with a focus on reproducibility.
4
4
5
- ** Note:** Hpolib2 is under active construction. Stay tuned for more benchmarks. Information on how to contribute a new benchmark will follow shortly.
5
+ ** Note:** HPOBench is under active construction. Stay tuned for more benchmarks. Information on how to contribute a new benchmark will follow shortly.
6
6
7
- ** Note:** If you are looking for a different version of HPOlib2 , you might be looking for [ HPOlib1.5] ( https://github.com/automl/HPOlib1.5 )
7
+ ** Note:** If you are looking for a different version of HPOBench , you might be looking for [ HPOlib1.5] ( https://github.com/automl/HPOlib1.5 )
8
8
9
9
## In 4 lines of code
10
10
11
11
Run a random configuration within a singularity container
12
12
``` python
13
- from hpolib .container.benchmarks.ml.xgboost_benchmark import XGBoostBenchmark
13
+ from hpobench .container.benchmarks.ml.xgboost_benchmark import XGBoostBenchmark
14
14
b = XGBoostBenchmark(task_id = 167149 , container_source = ' library://phmueller/automl' , rng = 1 )
15
15
config = b.get_configuration_space(seed = 1 ).sample_configuration()
16
16
result_dict = b.objective_function(configuration = config, fidelity = {" n_estimators" : 128 , " subsample" : 0.5 }, rng = 1 )
@@ -19,7 +19,7 @@ result_dict = b.objective_function(configuration=config, fidelity={"n_estimators
19
19
All benchmarks can also be queried with fewer or no fidelities:
20
20
21
21
``` python
22
- from hpolib .container.benchmarks.ml.xgboost_benchmark import XGBoostBenchmark
22
+ from hpobench .container.benchmarks.ml.xgboost_benchmark import XGBoostBenchmark
23
23
b = XGBoostBenchmark(task_id = 167149 , container_source = ' library://phmueller/automl' , rng = 1 )
24
24
config = b.get_configuration_space(seed = 1 ).sample_configuration()
25
25
result_dict = b.objective_function(configuration = config, fidelity = {" n_estimators" : 128 ,}, rng = 1 )
@@ -35,7 +35,7 @@ Further requirements are: [ConfigSpace](https://github.com/automl/ConfigSpace),
35
35
36
36
A simple example is the XGBoost benchmark which can be installed with ` pip install .[xgboost] `
37
37
``` python
38
- from hpolib .benchmarks.ml.xgboost_benchmark import XGBoostBenchmark
38
+ from hpobench .benchmarks.ml.xgboost_benchmark import XGBoostBenchmark
39
39
b = XGBoostBenchmark(task_id = 167149 )
40
40
config = b.get_configuration_space(seed = 1 ).sample_configuration()
41
41
result_dict = b.objective_function(configuration = config, fidelity = {" n_estimators" : 128 , " subsample" : 0.5 }, rng = 1 )
@@ -47,8 +47,8 @@ result_dict = b.objective_function(configuration=config, fidelity={"n_estimators
47
47
Before we start, we recommend using a virtual environment. To run any benchmark using its singularity container,
48
48
run the following:
49
49
```
50
- git clone https://github.com/automl/HPOlib2 .git
51
- cd HPOlib2
50
+ git clone https://github.com/automl/HPOBench .git
51
+ cd HPOBench
52
52
pip install .
53
53
```
54
54
@@ -78,29 +78,29 @@ pip install .
78
78
With singularity installed run the following to built the xgboost container
79
79
80
80
``` bash
81
- cd hpolib /container/recipes/ml
81
+ cd hpobench /container/recipes/ml
82
82
sudo singularity build xgboost_benchmark Singularity.XGBoostBenchmark
83
83
```
84
84
85
85
You can use this local image with:
86
86
87
87
``` python
88
- from hpolib .container.benchmarks.ml.xgboost_benchmark import XGBoostBenchmark
88
+ from hpobench .container.benchmarks.ml.xgboost_benchmark import XGBoostBenchmark
89
89
b = XGBoostBenchmark(task_id = 167149 , container_name = " xgboost_benchmark" ,
90
- container_source = ' ./' ) # path to hpolib /container/recipes/ml
90
+ container_source = ' ./' ) # path to hpobench /container/recipes/ml
91
91
config = b.get_configuration_space(seed = 1 ).sample_configuration()
92
92
result_dict = b.objective_function(config, fidelity = {" n_estimators" : 128 , " subsample" : 0.5 })
93
93
```
94
94
95
95
### Remove all caches
96
96
97
- #### HPOlib data
98
- HPOlib stores downloaded containers and datasets at the following locations:
97
+ #### HPOBench data
98
+ HPOBench stores downloaded containers and datasets at the following locations:
99
99
100
100
``` bash
101
- $XDG_CONFIG_HOME # ~/.config/hpolib2
102
- $XDG_CACHE_HOME # ~/.config/hpolib2
103
- $XDG_DATA_HOME # ~/.cache/hpolib2
101
+ $XDG_CONFIG_HOME # ~/.config/hpobench
102
+ $XDG_CACHE_HOME # ~/.config/hpobench
103
+ $XDG_DATA_HOME # ~/.cache/hpobench
104
104
```
105
105
106
106
For crashes or when not properly shutting down containers, there might be socket files left under ` /tmp/ ` .
@@ -127,10 +127,10 @@ See whether in `~/.singularity/instances/sing/$HOSTNAME/*/` there is a file that
127
127
128
128
Status for Master Branch:
129
129
130
- [ ![ Build Status] ( https://travis-ci.org/automl/HPOlib2 .svg?branch=master )] ( https://travis-ci.org/automl/HPOlib2 )
131
- [ ![ codecov] ( https://codecov.io/gh/automl/HPOlib2 /branch/master/graph/badge.svg )] ( https://codecov.io/gh/automl/HPOlib2 )
130
+ [ ![ Build Status] ( https://travis-ci.org/automl/HPOBench .svg?branch=master )] ( https://travis-ci.org/automl/HPOBench )
131
+ [ ![ codecov] ( https://codecov.io/gh/automl/HPOBench /branch/master/graph/badge.svg )] ( https://codecov.io/gh/automl/HPOBench )
132
132
133
133
Status for Development Branch:
134
134
135
- [ ![ Build Status] ( https://travis-ci.org/automl/HPOlib2 .svg?branch=development )] ( https://travis-ci.org/automl/HPOlib2 )
136
- [ ![ codecov] ( https://codecov.io/gh/automl/HPOlib2 /branch/development/graph/badge.svg )] ( https://codecov.io/gh/automl/HPOlib2 )
135
+ [ ![ Build Status] ( https://travis-ci.org/automl/HPOBench .svg?branch=development )] ( https://travis-ci.org/automl/HPOBench )
136
+ [ ![ codecov] ( https://codecov.io/gh/automl/HPOBench /branch/development/graph/badge.svg )] ( https://codecov.io/gh/automl/HPOBench )
0 commit comments