diff --git a/ ml_ops/sm-mlflow_pipelines/sm-mlflow_pipelines.ipynb b/ml_ops/sm-mlflow_pipelines/sm-mlflow_pipelines.ipynb similarity index 99% rename from ml_ops/sm-mlflow_pipelines/sm-mlflow_pipelines.ipynb rename to ml_ops/sm-mlflow_pipelines/sm-mlflow_pipelines.ipynb index 23228e2096..fd2d6ac0f6 100644 --- a/ ml_ops/sm-mlflow_pipelines/sm-mlflow_pipelines.ipynb +++ b/ml_ops/sm-mlflow_pipelines/sm-mlflow_pipelines.ipynb @@ -147,17 +147,17 @@ "outputs": [], "source": [ "%%writefile requirements.txt\n", - "scikit-learn\n", - "xgboost==1.7.6\n", - "s3fs==0.4.2\n", - "sagemaker>=2.199.0,<3\n", - "pandas>=2.0.0\n", + "scikit-learn==1.6.1\n", + "xgboost==2.1.4\n", + "s3fs\n", + "sagemaker>=2.230.0,<3\n", + "pandas>=2.2.3\n", "gevent\n", "geventhttpclient\n", "shap\n", "matplotlib\n", "fsspec\n", - "mlflow==2.13.2\n", + "mlflow==2.20.2\n", "sagemaker-mlflow==0.1.0" ] }, @@ -370,12 +370,11 @@ " y_train = (train_df.pop(label_column) == \"M\").astype(\"int\")\n", " y_validation = (validation_df.pop(label_column) == \"M\").astype(\"int\")\n", "\n", - " xgb = XGBClassifier(n_estimators=num_round, **param)\n", + " xgb = XGBClassifier(n_estimators=num_round, early_stopping_rounds=5,**param)\n", " xgb.fit(\n", " train_df,\n", " y_train,\n", " eval_set=[(validation_df, y_validation)],\n", - " early_stopping_rounds=5,\n", " )\n", "\n", " # return xgb\n",