|
| 1 | +# Strands AgentCore Memory Examples |
| 2 | + |
| 3 | +This directory contains comprehensive examples demonstrating how to use the Strands AgentCoreMemorySessionManager with Amazon Bedrock AgentCore Memory for persistent conversation storage and intelligent retrieval (Supports STM and LTM). |
| 4 | + |
| 5 | +## Quick Setup |
| 6 | + |
| 7 | +```bash |
| 8 | +pip install 'bedrock-agentcore[strands-agents]' |
| 9 | +``` |
| 10 | + |
| 11 | +or to develop locally: |
| 12 | +```bash |
| 13 | +git clone https://github.com/aws/bedrock-agentcore-sdk-python.git |
| 14 | +cd bedrock-agentcore-sdk-python |
| 15 | +uv sync |
| 16 | +source .venv/bin/activate |
| 17 | +``` |
| 18 | + |
| 19 | +## Examples Overview |
| 20 | + |
| 21 | +### 1. Short-Term Memory (STM) |
| 22 | +Basic memory functionality for conversation persistence within a session. |
| 23 | + |
| 24 | +### 2. Long-Term Memory (LTM) |
| 25 | +Advanced memory with multiple strategies for user preferences, facts, and session summaries. |
| 26 | + |
| 27 | +--- |
| 28 | + |
| 29 | +## Short-Term Memory Example |
| 30 | + |
| 31 | +### Basic Setup |
| 32 | + |
| 33 | +```python |
| 34 | +import uuid |
| 35 | +import boto3 |
| 36 | +from datetime import date |
| 37 | +from strands import Agent |
| 38 | +from bedrock_agentcore.memory import MemoryClient |
| 39 | +from bedrock_agentcore.memory.integrations.strands.config import AgentCoreMemoryConfig, RetrievalConfig |
| 40 | +from bedrock_agentcore.memory.integrations.strands.session_manager import AgentCoreMemorySessionManager |
| 41 | +``` |
| 42 | + |
| 43 | +### Create a Basic Memory |
| 44 | + |
| 45 | +```python |
| 46 | +client = MemoryClient(region_name="us-east-1") |
| 47 | +basic_memory = client.create_memory( |
| 48 | + name="BasicTestMemory", |
| 49 | + description="Basic memory for testing short-term functionality" |
| 50 | +) |
| 51 | +print(basic_memory.get('id')) |
| 52 | +``` |
| 53 | + |
| 54 | +### Configure and Use Agent |
| 55 | + |
| 56 | +```python |
| 57 | +MEM_ID = basic_memory.get('id') |
| 58 | +ACTOR_ID = "actor_id_test_%s" % datetime.now().strftime("%Y%m%d%H%M%S") |
| 59 | +SESSION_ID = "testing_session_id_%s" % datetime.now().strftime("%Y%m%d%H%M%S") |
| 60 | + |
| 61 | + |
| 62 | +# Configure memory |
| 63 | +agentcore_memory_config = AgentCoreMemoryConfig( |
| 64 | + memory_id=MEM_ID, |
| 65 | + session_id=SESSION_ID, |
| 66 | + actor_id=ACTOR_ID |
| 67 | +) |
| 68 | + |
| 69 | +# Create session manager |
| 70 | +session_manager = AgentCoreMemorySessionManager( |
| 71 | + agentcore_memory_config=agentcore_memory_config, |
| 72 | + region_name="us-east-1" |
| 73 | +) |
| 74 | + |
| 75 | +# Create agent |
| 76 | +agent = Agent( |
| 77 | + system_prompt="You are a helpful assistant. Use all you know about the user to provide helpful responses.", |
| 78 | + session_manager=session_manager, |
| 79 | +) |
| 80 | +``` |
| 81 | + |
| 82 | +### Example Conversation |
| 83 | + |
| 84 | +```python |
| 85 | +agent("I like sushi with tuna") |
| 86 | +# Agent remembers this preference |
| 87 | + |
| 88 | +agent("I like pizza") |
| 89 | +# Agent acknowledges both preferences |
| 90 | + |
| 91 | +agent("What should I buy for lunch today?") |
| 92 | +# Agent suggests options based on remembered preferences |
| 93 | +``` |
| 94 | + |
| 95 | +--- |
| 96 | + |
| 97 | +## Long-Term Memory Example |
| 98 | + |
| 99 | +### Create LTM Memory with Strategies |
| 100 | + |
| 101 | +```python |
| 102 | +from bedrock_agentcore.memory.integrations.strands.config import AgentCoreMemoryConfig, RetrievalConfig |
| 103 | +from bedrock_agentcore.memory.integrations.strands.session_manager import AgentCoreMemorySessionManager |
| 104 | +from datetime import datetime |
| 105 | + |
| 106 | +# Create comprehensive memory with all built-in strategies |
| 107 | +client = MemoryClient(region_name="us-east-1") |
| 108 | +comprehensive_memory = client.create_memory_and_wait( |
| 109 | + name="ComprehensiveAgentMemory", |
| 110 | + description="Full-featured memory with all built-in strategies", |
| 111 | + strategies=[ |
| 112 | + { |
| 113 | + "summaryMemoryStrategy": { |
| 114 | + "name": "SessionSummarizer", |
| 115 | + "namespaces": ["/summaries/{actorId}/{sessionId}"] |
| 116 | + } |
| 117 | + }, |
| 118 | + { |
| 119 | + "userPreferenceMemoryStrategy": { |
| 120 | + "name": "PreferenceLearner", |
| 121 | + "namespaces": ["/preferences/{actorId}"] |
| 122 | + } |
| 123 | + }, |
| 124 | + { |
| 125 | + "semanticMemoryStrategy": { |
| 126 | + "name": "FactExtractor", |
| 127 | + "namespaces": ["/facts/{actorId}"] |
| 128 | + } |
| 129 | + } |
| 130 | + ] |
| 131 | +) |
| 132 | +MEM_ID = comprehensive_memory.get('id') |
| 133 | +ACTOR_ID = "actor_id_test_%s" % datetime.now().strftime("%Y%m%d%H%M%S") |
| 134 | +SESSION_ID = "testing_session_id_%s" % datetime.now().strftime("%Y%m%d%H%M%S") |
| 135 | + |
| 136 | +``` |
| 137 | + |
| 138 | +### Single Namespace Retrieval |
| 139 | + |
| 140 | +```python |
| 141 | +config = AgentCoreMemoryConfig( |
| 142 | + memory_id=MEM_ID, |
| 143 | + session_id=SESSION_ID, |
| 144 | + actor_id=ACTOR_ID, |
| 145 | + retrieval_config={ |
| 146 | + "/preferences/{actorId}": RetrievalConfig( |
| 147 | + top_k=5, |
| 148 | + relevance_score=0.7 |
| 149 | + ) |
| 150 | + } |
| 151 | +) |
| 152 | +session_manager = AgentCoreMemorySessionManager(config, region_name='us-east-1') |
| 153 | +ltm_agent = Agent(session_manager=session_manager) |
| 154 | +``` |
| 155 | + |
| 156 | +### Multiple Namespace Retrieval |
| 157 | + |
| 158 | +```python |
| 159 | +config = AgentCoreMemoryConfig( |
| 160 | + memory_id=MEM_ID, |
| 161 | + session_id=SESSION_ID, |
| 162 | + actor_id=ACTOR_ID, |
| 163 | + retrieval_config={ |
| 164 | + "/preferences/{actorId}": RetrievalConfig( |
| 165 | + top_k=5, |
| 166 | + relevance_score=0.7 |
| 167 | + ), |
| 168 | + "/facts/{actorId}": RetrievalConfig( |
| 169 | + top_k=10, |
| 170 | + relevance_score=0.3 |
| 171 | + ), |
| 172 | + "/summaries/{actorId}/{sessionId}": RetrievalConfig( |
| 173 | + top_k=5, |
| 174 | + relevance_score=0.5 |
| 175 | + ) |
| 176 | + } |
| 177 | +) |
| 178 | +session_manager = AgentCoreMemorySessionManager(config, region_name='us-east-1') |
| 179 | +agent_with_multiple_namespaces = Agent(session_manager=session_manager) |
| 180 | +``` |
| 181 | + |
| 182 | +--- |
| 183 | + |
| 184 | +## Large Payload example processing an Image using the [strands_tools](https://github.com/strands-agents/tools) library |
| 185 | + |
| 186 | +### Agent with Image Processing |
| 187 | + |
| 188 | +```python |
| 189 | +from strands import Agent, tool |
| 190 | +from strands_tools import generate_image, image_reader |
| 191 | + |
| 192 | +ACTOR_ID = "actor_id_test_%s" % datetime.now().strftime("%Y%m%d%H%M%S") |
| 193 | +SESSION_ID = "testing_session_id_%s" % datetime.now().strftime("%Y%m%d%H%M%S") |
| 194 | + |
| 195 | +config = AgentCoreMemoryConfig( |
| 196 | + memory_id=MEM_ID, |
| 197 | + session_id=SESSION_ID, |
| 198 | + actor_id=ACTOR_ID, |
| 199 | +) |
| 200 | +session_manager = AgentCoreMemorySessionManager(config, region_name='us-east-1') |
| 201 | +agent_with_tools = Agent( |
| 202 | + tools=[image_reader], |
| 203 | + system_prompt="You will be provided with a filesystem path to an image. Describe the image in detail.", |
| 204 | + session_manager=session_manager, |
| 205 | + agent_id='my_test_agent_id' |
| 206 | +) |
| 207 | +# Use with image |
| 208 | +result = agent_with_tools("/path/to/image.png") |
| 209 | +``` |
| 210 | + |
| 211 | +--- |
| 212 | + |
| 213 | +## Key Configuration Options |
| 214 | + |
| 215 | +### AgentCoreMemoryConfig Parameters |
| 216 | + |
| 217 | +- `memory_id`: ID of the Bedrock AgentCore Memory resource |
| 218 | +- `session_id`: Unique identifier for the conversation session |
| 219 | +- `actor_id`: Unique identifier for the user/actor |
| 220 | +- `retrieval_config`: Dictionary mapping namespaces to RetrievalConfig objects |
| 221 | + |
| 222 | +### RetrievalConfig Parameters |
| 223 | + |
| 224 | +- `top_k`: Number of top results to retrieve (default: 5) |
| 225 | +- `relevance_score`: Minimum relevance threshold (0.0-1.0) |
| 226 | + |
| 227 | +### Memory Strategies |
| 228 | +https://docs.aws.amazon.com/bedrock-agentcore/latest/devguide/memory-strategies.html |
| 229 | + |
| 230 | +1. **summaryMemoryStrategy**: Summarizes conversation sessions |
| 231 | +2. **userPreferenceMemoryStrategy**: Learns and stores user preferences |
| 232 | +3. **semanticMemoryStrategy**: Extracts and stores factual information |
| 233 | + |
| 234 | +### Namespace Patterns |
| 235 | + |
| 236 | +- `/preferences/{actorId}`: User-specific preferences |
| 237 | +- `/facts/{actorId}`: User-specific facts |
| 238 | +- `/summaries/{actorId}/{sessionId}`: Session-specific summaries |
| 239 | + |
| 240 | + |
| 241 | +--- |
| 242 | + |
| 243 | +## Important Notes |
| 244 | + |
| 245 | +### Session Management |
| 246 | +- Only **one** agent per session is currently supported |
| 247 | +- Creating multiple agents with the same session will show a warning |
| 248 | + |
| 249 | +### Memory Types |
| 250 | +- **STM (Short-Term Memory)**: Basic conversation persistence within a session |
| 251 | +- **LTM (Long-Term Memory)**: Advanced memory with multiple strategies for learning user preferences, facts, and summaries |
| 252 | + |
| 253 | +### Best Practices |
| 254 | +- Use unique `session_id` for each conversation |
| 255 | +- Use consistent `actor_id` for the same user across sessions |
| 256 | +- Configure appropriate `relevance_score` thresholds for your use case |
| 257 | +- Test with different `top_k` values to optimize retrieval performance |
0 commit comments