Skip to content

Sagemaker creates separate experiment runs for training jobs #4523

Open
@Omaraldarwish

Description

@Omaraldarwish

Describe the bug
Having followed virtually all guidance available on experiment tracking for a training job with "bring your own script" model, it seems sagemaker always decides to crate a separate run for the training job. So for each run I end up with two runs: one which I initialize and all the metrics are logged to, a second 'pytorch-training--aws-training-job' which contains the output model artifacts and the debug info.

To reproduce
relevant excerpt from code that initiates the training jon
`
from sagemaker.pytorch import PyTorch
from sagemaker.experiments import Run

experiment_name = 'test_experiment'
run_name = 'test_run'

with Run(experiment_name=experiment_name, run_name=run_name) as run:
est = PyTorch(
entry_point="./job.py",
role=role,
model_dir=False,
framework_version="2.2",
py_version="py310",
instance_type="ml.g5.12xlarge",
instance_count=1,
hyperparameters=hyperparameters
)
est.fit()
`

relevant excerpt from job.py
`
if name == "main":
from sagemaker.session import Session
from sagemaker.experiments.run import load_run

session = Session(boto3.session.Session(region_name='us-west-2'))
with load_run(sagemaker_session=session) as run:
    # Log all parameters
    run.log_parameters({k:str(v) for k,v in vars(args).items()})
    run.log_parameter('job_name', str(job_name))

    execute(args, run)

`

Expected behavior
the experiment config passed to the estimator should correctly contain the run and the experiment and the training job should be associated with the run.

Screenshots or logs
image

System information
A description of your system. Please provide:

  • SageMaker Python SDK version:2.212.0
  • Framework name (eg. PyTorch) or algorithm (eg. KMeans): PyTorch
  • Framework version:2.2
  • Python version:310
  • CPU or GPU:GPU
  • Custom Docker image (Y/N):N

Additional context
I've tried virtually everything including manually passing the experiment config.

Metadata

Metadata

Assignees

Labels

Type

No type

Projects

No projects

Milestone

No milestone

Relationships

None yet

Development

No branches or pull requests

Issue actions