generated from bearycool11/AI_memory_Loops
-
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFinn.py
104 lines (83 loc) · 3.2 KB
/
Finn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
from fastapi import FastAPI, Depends, HTTPException
from pydantic import BaseModel
import pickle
from typing import List
import json
# Initialize FastAPI
app = FastAPI()
# ---- Core Brain Components (PMLL, ARLL, EFLL) ----
class PMLLMemory:
"""Persistent Memory to store historical data."""
def __init__(self):
self.history = []
def save(self, input_text, prediction, feedback=None):
entry = {"text": input_text, "prediction": prediction, "feedback": feedback}
self.history.append(entry)
def get_history(self):
return self.history
class ARLL:
"""Adaptive Reinforcement Learning for model improvement."""
def __init__(self, model):
self.model = model
self.feedback_data = []
def record_feedback(self, input_text, true_sentiment):
self.feedback_data.append((input_text, true_sentiment))
def retrain_model(self):
# Simulated model improvement logic
print(f"Retraining model with {len(self.feedback_data)} feedback entries.")
class EFLL:
"""Emotional Feedback Learning for empathetic responses."""
def provide_emotional_feedback(self, sentiment):
feedback_map = {
"positive": "That's great to hear!",
"negative": "I'm sorry to hear that. Let me know how I can help.",
"neutral": "Thanks for sharing your thoughts."
}
return feedback_map.get(sentiment, "Thank you for your input.")
# ---- Initialize Framework Components ----
pmll_memory = PMLLMemory()
arll = ARLL(model=None) # Model will be loaded dynamically
efll = EFLL()
# ---- Model Loading ----
def load_model():
try:
with open("sentiment_model.pkl", "rb") as f:
return pickle.load(f)
except FileNotFoundError:
raise HTTPException(status_code=500, detail="Model file not found.")
@app.on_event("startup")
def startup_event():
global model
model = load_model()
arll.model = model # Link the loaded model to ARLL
# ---- FastAPI Endpoints ----
class TextInput(BaseModel):
text: str
class FeedbackInput(BaseModel):
text: str
true_sentiment: str
@app.post("/predict")
async def predict(input: TextInput, model=Depends(load_model)):
try:
prediction = model.predict([input.text])[0]
pmll_memory.save(input.text, prediction) # Store in PMLL
emotional_feedback = efll.provide_emotional_feedback(prediction) # Generate EFLL response
return {"text": input.text, "sentiment": prediction, "emotional_feedback": emotional_feedback}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post("/feedback")
async def feedback(input: FeedbackInput):
arll.record_feedback(input.text, input.true_sentiment)
pmll_memory.save(input.text, None, feedback=input.true_sentiment) # Log feedback in PMLL
return {"message": "Feedback recorded. Thank you!"}
@app.post("/retrain")
async def retrain_model():
arll.retrain_model()
return {"message": "Model retrained successfully."}
@app.get("/history")
async def get_history():
return pmll_memory.get_history()
# ---- Finn Initialization ----
@app.get("/")
async def root():
return {"message": "Welcome to Finn, the Brain of ChatGPT and OpenAI."}