-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpreprocess.py
224 lines (176 loc) · 8.33 KB
/
preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
# Load data and IP clustering
import math
import random
import pandas as pd
import numpy as np
import argparse
from sklearn import preprocessing
from lib.utils import MaxMinScaler
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', type=str, default='New_York', choices=["Shanghai", "New_York", "Los_Angeles"],
help='which dataset to use')
parser.add_argument('--train_test_ratio', type=float, default=0.8, help='landmark ratio')
parser.add_argument('--lm_ratio', type=float, default=0.7, help='landmark ratio')
parser.add_argument('--seed', type=int, default=1234)
# parser.add_argument('--seed', type=int, default=2022)
opt = parser.parse_args()
print("Dataset: ", opt.dataset)
def get_XY(dataset):
data_path = "./datasets/{}/data.csv".format(dataset)
ip_path = './datasets/{}/ip.csv'.format(dataset)
trace_path = './datasets/{}/last_traceroute.csv'.format(dataset)
data_origin = pd.read_csv(data_path, encoding='gbk', low_memory=False)
ip_origin = pd.read_csv(ip_path, encoding='gbk', low_memory=False)
trace_origin = pd.read_csv(trace_path, encoding='gbk', low_memory=False)
data = pd.concat([data_origin, ip_origin, trace_origin], axis=1)
data.fillna({"isp": '0'}, inplace=True)
# labels
Y = data[['longitude', 'latitude']]
Y = np.array(Y)
# features
if dataset == "Shanghai": # Shanghai
# classification features
X_class = data[['orgname', 'asname', 'address', 'isp']]
scaler = preprocessing.OneHotEncoder(sparse=False)
X_class = scaler.fit_transform(X_class)
X_class1 = data['isp']
X_class1 = preprocessing.LabelEncoder().fit_transform(X_class1)
X_class1 = preprocessing.MinMaxScaler().fit_transform(np.array(X_class1).reshape((-1, 1)))
X_2 = data[['ip_split1', 'ip_split2', 'ip_split3', 'ip_split4']]
X_2 = preprocessing.MinMaxScaler().fit_transform(np.array(X_2))
X_3 = data[['aiwen_ping_delay_time', 'vp806_ping_delay_time', 'vp808_ping_delay_time', 'vp813_ping_delay_time']]
delay_scaler = MaxMinScaler()
delay_scaler.fit(X_3)
X_3 = delay_scaler.transform(X_3)
X_4 = data[['aiwen_tr_steps', 'vp806_tr_steps', 'vp808_tr_steps', 'vp813_tr_steps']]
step_scaler = MaxMinScaler()
step_scaler.fit(X_4)
X_4 = step_scaler.transform(X_4)
X_5 = data['asnumber']
X_5 = preprocessing.LabelEncoder().fit_transform(X_5)
X_5 = preprocessing.MinMaxScaler().fit_transform(np.array(X_5).reshape(-1, 1))
X_6 = data[
['aiwen_last1_delay', 'aiwen_last2_delay_total', 'aiwen_last3_delay_total', 'aiwen_last4_delay_total',
'vp806_last1_delay', 'vp806_last2_delay_total', 'vp806_last3_delay_total', 'vp806_last4_delay_total',
'vp808_last1_delay', 'vp808_last2_delay_total', 'vp808_last3_delay_total', 'vp808_last4_delay_total',
'vp813_last1_delay', 'vp813_last2_delay_total', 'vp813_last3_delay_total', 'vp813_last4_delay_total']]
X_6 = np.array(X_6)
X_6[X_6 <= 0] = 0
X_6 = preprocessing.MinMaxScaler().fit_transform(X_6)
X = np.concatenate([X_class1, X_class, X_2, X_3, X_4, X_5, X_6], axis=1)
elif dataset == "New_York" or "Los_Angeles": # New_York or Los_Angeles
X_class = data['isp']
X_class = preprocessing.LabelEncoder().fit_transform(X_class)
X_class = preprocessing.MinMaxScaler().fit_transform(np.array(X_class).reshape((-1, 1)))
X_2 = data[['ip_split1', 'ip_split2', 'ip_split3', 'ip_split4']]
X_2 = preprocessing.MinMaxScaler().fit_transform(np.array(X_2))
X_3 = data['as_mult_info']
X_3 = preprocessing.LabelEncoder().fit_transform(X_3)
X_3 = preprocessing.MinMaxScaler().fit_transform(np.array(X_3).reshape(-1, 1))
X_4 = data[['vp900_ping_delay_time', 'vp901_ping_delay_time', 'vp902_ping_delay_time', 'vp903_ping_delay_time']]
delay_scaler = MaxMinScaler()
delay_scaler.fit(X_4)
X_4 = delay_scaler.transform(X_4)
X_5 = data[['vp900_tr_steps', 'vp901_tr_steps', 'vp902_tr_steps', 'vp903_tr_steps']]
step_scaler = MaxMinScaler()
step_scaler.fit(X_5)
X_5 = step_scaler.transform(X_5)
X_6 = data[
['vp900_last1_delay', 'vp900_last2_delay_total', 'vp900_last3_delay_total', 'vp900_last4_delay_total',
'vp901_last1_delay', 'vp901_last2_delay_total', 'vp901_last3_delay_total', 'vp901_last4_delay_total',
'vp902_last1_delay', 'vp902_last2_delay_total', 'vp902_last3_delay_total', 'vp902_last4_delay_total',
'vp903_last1_delay', 'vp903_last2_delay_total', 'vp903_last3_delay_total', 'vp903_last4_delay_total']]
X_6 = np.array(X_6)
X_6[X_6 <= 0] = 0
X_6 = preprocessing.MinMaxScaler().fit_transform(X_6)
X = np.concatenate([X_2, X_class, X_3, X_4, X_5, X_6], axis=1)
return X, Y, np.array(trace_origin)
def get_cols(row, mode="odd"):
start = 0 if mode == "odd" else 1
idxs = range(start, row.size, 2)
list = []
for i in idxs:
list.append(row[i])
return np.array(list)
def find_nearest_router(row):
last_router_idx = list(range(0, 32, 8))
last_delay_idx = list(range(1, 32, 8))
routers = row[last_router_idx]
delays = row[last_delay_idx]
delays[delays <= 0] = math.inf
nearest_idx = np.argmin(delays)
return routers[nearest_idx], delays[nearest_idx]
def handle_common(common_router, landmarks, targets):
data = {
"router": common_router,
"exist": False
}
if common_router == "-1":
return data
lm_idx = np.argwhere(landmarks["router"] == common_router)
tg_idx = np.argwhere(targets["router"] == common_router)
if len(tg_idx) < 1:
return data
lm_nodes = landmarks["X"][lm_idx]
lm_labels = landmarks["Y"][lm_idx]
lm_delays = landmarks["delay"][lm_idx]
tg_nodes = targets["X"][tg_idx]
tg_labels = targets["Y"][tg_idx]
tg_delays = targets["delay"][tg_idx]
center = lm_labels.mean(axis=0)
data = {
"lm_X": lm_nodes,
"lm_Y": lm_labels,
"lm_delay": lm_delays,
"tg_X": tg_nodes,
"tg_Y": tg_labels,
"tg_delay": tg_delays,
"center": center,
"router": common_router,
"exist": True
}
return data
def get_idx(num, seed, train_test_ratio, lm_ratio):
idx = list(range(0, num))
random.seed(seed)
random.shuffle(idx)
lm_train_num = int(num * train_test_ratio * lm_ratio)
tg_train_num = int(num * train_test_ratio * (1 - lm_ratio))
lm_train_idx, tg_train_idx, tg_test_idx = idx[:lm_train_num], \
idx[lm_train_num:tg_train_num + lm_train_num], \
idx[lm_train_num + tg_train_num:]
return lm_train_idx, tg_train_idx, lm_train_idx + tg_train_idx, tg_test_idx
def get_graph(dataset, lm_idx, tg_idx, mode):
X, Y, T = get_XY(dataset) # preprocess whole dataset
last_hop = list(map(find_nearest_router, T)) # [(ip, time delay),...]
last_routers = np.array([hop[0] for hop in last_hop])
last_delays = np.array([hop[1] for hop in last_hop])
landmarks = {
"X": X[lm_idx],
"Y": Y[lm_idx],
"router": last_routers[lm_idx],
"delay": last_delays[lm_idx]
}
targets = {
"X": X[tg_idx],
"Y": Y[tg_idx],
"router": last_routers[tg_idx],
"delay": last_delays[tg_idx]
}
data = list(
map(lambda common_router: handle_common(common_router, landmarks, targets), np.unique(landmarks["router"])))
np.savez("datasets/{}/Clustering_s{}_lm{}_{}.npz".format(dataset, seed, int(lm_ratio * 100), mode), data=data)
if __name__ == '__main__':
seed = opt.seed
train_test_ratio = opt.train_test_ratio # 0.8
lm_ratio = opt.lm_ratio # 0.7
lm_train_idx, tg_train_idx, lm_test_idx, tg_test_idx = get_idx(len(get_XY(opt.dataset)[0]), seed,
train_test_ratio,
lm_ratio) # split train and test
print("loading train set...")
get_graph(opt.dataset, lm_train_idx, tg_train_idx, mode="train")
print("train set loaded.")
print("loading test set...")
get_graph(opt.dataset, lm_test_idx, tg_test_idx, mode="test")
print("test set loaded.")
print("finish!")