-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathfinetune_lm.py
145 lines (113 loc) · 3.9 KB
/
finetune_lm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
#!/usr/bin/env python
"""
finetune_lm.py
"""
import argparse
import os
import sys
import torch
import pickle
import numpy as np
from basenet.helpers import to_numpy, set_seeds, set_freeze
from ulmfit import LanguageModelLoader, LanguageModel, basenet_train
assert torch.__version__.split('.')[1] == '3', 'Downgrade to pytorch==0.3.2 (for now)'
# --
# CLI
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--lm-weights-path', type=str)
parser.add_argument('--lm-itos-path', type=str)
parser.add_argument('--itos-path', type=str)
parser.add_argument('--X-train', type=str)
parser.add_argument('--X-valid', type=str)
parser.add_argument('--outpath', type=str)
parser.add_argument('--seed', type=int, default=123)
return parser.parse_args()
# --
# Helpers
def load_lm_weights(lm_weights_path, lm_itos_path, itos_path):
lm_weights = torch.load(lm_weights_path, map_location=lambda storage, loc: storage)
lm_itos = pickle.load(open(lm_itos_path, 'rb'))
lm_stoi = {v:k for k,v in enumerate(lm_itos)}
itos = pickle.load(open(itos_path, 'rb'))
n_tok = len(itos)
# Adjust vocabulary to match finetuning corpus
lm_enc_weights = to_numpy(lm_weights['0.encoder.weight'])
tmp = np.zeros((n_tok, lm_enc_weights.shape[1]), dtype=np.float32)
tmp += lm_enc_weights.mean(axis=0)
for i, w in enumerate(itos):
if w in lm_stoi:
tmp[i] = lm_enc_weights[lm_stoi[w]]
lm_weights['0.encoder.weight'] = torch.Tensor(tmp.copy())
lm_weights['0.encoder_with_dropout.embed.weight'] = torch.Tensor(tmp.copy())
lm_weights['1.decoder.weight'] = torch.Tensor(tmp.copy())
return lm_weights, n_tok
# --
# Run
if __name__ == "__main__":
# --
# Params
emb_sz, nhid, nlayers = 400, 1150, 3
bptt = 70
bs = 52
drops = np.array([0.25, 0.1, 0.2, 0.02, 0.15]) * 0.7
lrs = 1e-3
wd = 1e-7
args = parse_args()
set_seeds(args.seed)
os.makedirs(args.outpath, exist_ok=True)
# --
# Load model
print('finetune_lm.py: loading LM weights', file=sys.stderr)
lm_weights, n_tok = load_lm_weights(args.lm_weights_path, args.lm_itos_path, args.itos_path)
language_model = LanguageModel(
n_tok = n_tok,
emb_sz = emb_sz,
nhid = nhid,
nlayers = nlayers,
pad_token = 1,
dropouti = drops[0],
dropout = drops[1],
wdrop = drops[2],
dropoute = drops[3],
dropouth = drops[4],
).to('cuda')
print(language_model, file=sys.stderr)
language_model.verbose = True
language_model.load_weights(lm_weights)
set_freeze(language_model, False)
_ = language_model.train()
# --
# Load data
X_train = np.load(args.X_train)
X_valid = np.load(args.X_valid)
fitist = []
dataloaders = {
"train" : LanguageModelLoader(np.concatenate(X_train), bs=bs, bptt=bptt),
"valid" : LanguageModelLoader(np.concatenate(X_valid), bs=bs, bptt=bptt),
}
# Finetune decoder
set_freeze(language_model.encoder.rnns, True)
set_freeze(language_model.encoder.dropouths, True)
lm_ft_last = basenet_train(
language_model,
dataloaders,
num_epochs=1,
lr_breaks=[0, 0.5, 1],
lr_vals=[lrs / 64, lrs / 2, lrs / 64],
adam_betas=(0.8, 0.99),
weight_decay=wd,
save_prefix=os.path.join(args.outpath, 'lm_ft_last'),
)
# Finetune end-to-end
set_freeze(language_model.encoder, False)
lm_ft_all = basenet_train(
language_model,
dataloaders,
num_epochs=15,
lr_breaks=[0, 15 / 10, 15],
lr_vals=[lrs / 20, lrs, lrs / 20],
adam_betas=(0.8, 0.99),
weight_decay=wd,
save_prefix=os.path.join(args.outpath, 'lm_ft_final'),
)