diff --git a/Cargo.toml b/Cargo.toml
index 5f4fd2c..a32553e 100644
--- a/Cargo.toml
+++ b/Cargo.toml
@@ -1,6 +1,6 @@
 [package]
 name = "arrayvec"
-version = "0.7.4"
+version = "0.8.0"
 authors = ["bluss"]
 license = "MIT OR Apache-2.0"
 edition = "2018"
@@ -42,6 +42,7 @@ harness = false
 [features]
 default = ["std"]
 std = []
+copy = []
 
 [profile.bench]
 debug = true
diff --git a/src/arrayvec_copy.rs b/src/arrayvec_copy.rs
new file mode 100644
index 0000000..8740cf6
--- /dev/null
+++ b/src/arrayvec_copy.rs
@@ -0,0 +1,1273 @@
+use std::cmp;
+use std::iter;
+use std::mem;
+use std::ops::{Bound, Deref, DerefMut, RangeBounds};
+use std::ptr;
+use std::slice;
+
+// extra traits
+use std::borrow::{Borrow, BorrowMut};
+use std::fmt;
+use std::hash::{Hash, Hasher};
+
+#[cfg(feature = "std")]
+use std::io;
+
+use std::mem::MaybeUninit;
+
+#[cfg(feature = "serde")]
+use serde::{Deserialize, Deserializer, Serialize, Serializer};
+
+use crate::arrayvec_impl::ArrayVecImpl;
+use crate::errors::CapacityError;
+use crate::utils::MakeMaybeUninit;
+use crate::LenUint;
+
+/// A vector with a fixed capacity which implements `Copy` and its elemenents are constrained to also be `Copy`.
+///
+/// The `ArrayVecCopy` is a vector backed by a fixed size array. It keeps track of
+/// the number of initialized elements. The `ArrayVecCopy<T, CAP>` is parameterized
+/// by `T` for the element type and `CAP` for the maximum capacity.
+///
+/// `CAP` is of type `usize` but is range limited to `u32::MAX`; attempting to create larger
+/// arrayvecs with larger capacity will panic.
+///
+/// The vector is a contiguous value (storing the elements inline) that you can store directly on
+/// the stack if needed.
+///
+/// It offers a simple API but also dereferences to a slice, so that the full slice API is
+/// available. The ArrayVecCopy can be converted into a by value iterator.
+pub struct ArrayVecCopy<T: Copy, const CAP: usize> {
+    // the `len` first elements of the array are initialized
+    xs: [MaybeUninit<T>; CAP],
+    len: LenUint,
+}
+
+macro_rules! panic_oob {
+    ($method_name:expr, $index:expr, $len:expr) => {
+        panic!(
+            concat!(
+                "ArrayVecCopy::",
+                $method_name,
+                ": index {} is out of bounds in vector of length {}"
+            ),
+            $index, $len
+        )
+    };
+}
+
+impl<T: Copy, const CAP: usize> ArrayVecCopy<T, CAP> {
+    /// Capacity
+    const CAPACITY: usize = CAP;
+
+    /// Create a new empty `ArrayVecCopy`.
+    ///
+    /// The maximum capacity is given by the generic parameter `CAP`.
+    ///
+    /// ```
+    /// use arrayvec::copy::ArrayVecCopy;
+    ///
+    /// let mut array = ArrayVecCopy::<_, 16>::new();
+    /// array.push(1);
+    /// array.push(2);
+    /// assert_eq!(&array[..], &[1, 2]);
+    /// assert_eq!(array.capacity(), 16);
+    /// ```
+    pub fn new() -> ArrayVecCopy<T, CAP> {
+        assert_capacity_limit!(CAP);
+        unsafe {
+            ArrayVecCopy {
+                xs: MaybeUninit::uninit().assume_init(),
+                len: 0,
+            }
+        }
+    }
+
+    /// Create a new empty `ArrayVecCopy` (const fn).
+    ///
+    /// The maximum capacity is given by the generic parameter `CAP`.
+    ///
+    /// ```
+    /// use arrayvec::copy::ArrayVecCopy;
+    ///
+    /// static ARRAY: ArrayVecCopy<u8, 1024> = ArrayVecCopy::new_const();
+    /// ```
+    pub const fn new_const() -> ArrayVecCopy<T, CAP> {
+        assert_capacity_limit_const!(CAP);
+        ArrayVecCopy {
+            xs: MakeMaybeUninit::ARRAY,
+            len: 0,
+        }
+    }
+
+    /// Return the number of elements in the `ArrayVecCopy`.
+    ///
+    /// ```
+    /// use arrayvec::copy::ArrayVecCopy;
+    ///
+    /// let mut array = ArrayVecCopy::from([1, 2, 3]);
+    /// array.pop();
+    /// assert_eq!(array.len(), 2);
+    /// ```
+    #[inline(always)]
+    pub fn len(&self) -> usize {
+        self.len as usize
+    }
+
+    /// Returns whether the `ArrayVecCopy` is empty.
+    ///
+    /// ```
+    /// use arrayvec::copy::ArrayVecCopy;
+    ///
+    /// let mut array = ArrayVecCopy::from([1]);
+    /// array.pop();
+    /// assert_eq!(array.is_empty(), true);
+    /// ```
+    #[inline]
+    pub fn is_empty(&self) -> bool {
+        self.len() == 0
+    }
+
+    /// Return the capacity of the `ArrayVecCopy`.
+    ///
+    /// ```
+    /// use arrayvec::copy::ArrayVecCopy;
+    ///
+    /// let array = ArrayVecCopy::from([1, 2, 3]);
+    /// assert_eq!(array.capacity(), 3);
+    /// ```
+    #[inline(always)]
+    pub fn capacity(&self) -> usize {
+        CAP
+    }
+
+    /// Return true if the `ArrayVecCopy` is completely filled to its capacity, false otherwise.
+    ///
+    /// ```
+    /// use arrayvec::copy::ArrayVecCopy;
+    ///
+    /// let mut array = ArrayVecCopy::<_, 1>::new();
+    /// assert!(!array.is_full());
+    /// array.push(1);
+    /// assert!(array.is_full());
+    /// ```
+    pub fn is_full(&self) -> bool {
+        self.len() == self.capacity()
+    }
+
+    /// Returns the capacity left in the `ArrayVecCopy`.
+    ///
+    /// ```
+    /// use arrayvec::copy::ArrayVecCopy;
+    ///
+    /// let mut array = ArrayVecCopy::from([1, 2, 3]);
+    /// array.pop();
+    /// assert_eq!(array.remaining_capacity(), 1);
+    /// ```
+    pub fn remaining_capacity(&self) -> usize {
+        self.capacity() - self.len()
+    }
+
+    /// Push `element` to the end of the vector.
+    ///
+    /// ***Panics*** if the vector is already full.
+    ///
+    /// ```
+    /// use arrayvec::copy::ArrayVecCopy;
+    ///
+    /// let mut array = ArrayVecCopy::<_, 2>::new();
+    ///
+    /// array.push(1);
+    /// array.push(2);
+    ///
+    /// assert_eq!(&array[..], &[1, 2]);
+    /// ```
+    pub fn push(&mut self, element: T) {
+        ArrayVecImpl::push(self, element)
+    }
+
+    /// Push `element` to the end of the vector.
+    ///
+    /// Return `Ok` if the push succeeds, or return an error if the vector
+    /// is already full.
+    ///
+    /// ```
+    /// use arrayvec::copy::ArrayVecCopy;
+    ///
+    /// let mut array = ArrayVecCopy::<_, 2>::new();
+    ///
+    /// let push1 = array.try_push(1);
+    /// let push2 = array.try_push(2);
+    ///
+    /// assert!(push1.is_ok());
+    /// assert!(push2.is_ok());
+    ///
+    /// assert_eq!(&array[..], &[1, 2]);
+    ///
+    /// let overflow = array.try_push(3);
+    ///
+    /// assert!(overflow.is_err());
+    /// ```
+    pub fn try_push(&mut self, element: T) -> Result<(), CapacityError<T>> {
+        ArrayVecImpl::try_push(self, element)
+    }
+
+    /// Push `element` to the end of the vector without checking the capacity.
+    ///
+    /// It is up to the caller to ensure the capacity of the vector is
+    /// sufficiently large.
+    ///
+    /// This method uses *debug assertions* to check that the arrayvec is not full.
+    ///
+    /// ```
+    /// use arrayvec::copy::ArrayVecCopy;
+    ///
+    /// let mut array = ArrayVecCopy::<_, 2>::new();
+    ///
+    /// if array.len() + 2 <= array.capacity() {
+    ///     unsafe {
+    ///         array.push_unchecked(1);
+    ///         array.push_unchecked(2);
+    ///     }
+    /// }
+    ///
+    /// assert_eq!(&array[..], &[1, 2]);
+    /// ```
+    pub unsafe fn push_unchecked(&mut self, element: T) {
+        ArrayVecImpl::push_unchecked(self, element)
+    }
+
+    /// Shortens the vector, keeping the first `len` elements.
+    ///
+    /// If `len` is greater than the vector’s current length this has no
+    /// effect.
+    ///
+    /// ```
+    /// use arrayvec::copy::ArrayVecCopy;
+    ///
+    /// let mut array = ArrayVecCopy::from([1, 2, 3, 4, 5]);
+    /// array.truncate(3);
+    /// assert_eq!(&array[..], &[1, 2, 3]);
+    /// array.truncate(4);
+    /// assert_eq!(&array[..], &[1, 2, 3]);
+    /// ```
+    pub fn truncate(&mut self, new_len: usize) {
+        ArrayVecImpl::truncate(self, new_len)
+    }
+
+    /// Remove all elements in the vector.
+    pub fn clear(&mut self) {
+        ArrayVecImpl::clear(self)
+    }
+
+    /// Get pointer to where element at `index` would be
+    unsafe fn get_unchecked_ptr(&mut self, index: usize) -> *mut T {
+        self.as_mut_ptr().add(index)
+    }
+
+    /// Insert `element` at position `index`.
+    ///
+    /// Shift up all elements after `index`.
+    ///
+    /// It is an error if the index is greater than the length or if the
+    /// arrayvec is full.
+    ///
+    /// ***Panics*** if the array is full or the `index` is out of bounds. See
+    /// `try_insert` for fallible version.
+    ///
+    /// ```
+    /// use arrayvec::copy::ArrayVecCopy;
+    ///
+    /// let mut array = ArrayVecCopy::<_, 2>::new();
+    ///
+    /// array.insert(0, "x");
+    /// array.insert(0, "y");
+    /// assert_eq!(&array[..], &["y", "x"]);
+    ///
+    /// ```
+    pub fn insert(&mut self, index: usize, element: T) {
+        self.try_insert(index, element).unwrap()
+    }
+
+    /// Insert `element` at position `index`.
+    ///
+    /// Shift up all elements after `index`; the `index` must be less than
+    /// or equal to the length.
+    ///
+    /// Returns an error if vector is already at full capacity.
+    ///
+    /// ***Panics*** `index` is out of bounds.
+    ///
+    /// ```
+    /// use arrayvec::copy::ArrayVecCopy;
+    ///
+    /// let mut array = ArrayVecCopy::<_, 2>::new();
+    ///
+    /// assert!(array.try_insert(0, "x").is_ok());
+    /// assert!(array.try_insert(0, "y").is_ok());
+    /// assert!(array.try_insert(0, "z").is_err());
+    /// assert_eq!(&array[..], &["y", "x"]);
+    ///
+    /// ```
+    pub fn try_insert(&mut self, index: usize, element: T) -> Result<(), CapacityError<T>> {
+        if index > self.len() {
+            panic_oob!("try_insert", index, self.len())
+        }
+        if self.len() == self.capacity() {
+            return Err(CapacityError::new(element));
+        }
+        let len = self.len();
+
+        // follows is just like Vec<T>
+        unsafe {
+            // infallible
+            // The spot to put the new value
+            {
+                let p: *mut _ = self.get_unchecked_ptr(index);
+                // Shift everything over to make space. (Duplicating the
+                // `index`th element into two consecutive places.)
+                ptr::copy(p, p.offset(1), len - index);
+                // Write it in, overwriting the first copy of the `index`th
+                // element.
+                ptr::write(p, element);
+            }
+            self.set_len(len + 1);
+        }
+        Ok(())
+    }
+
+    /// Remove the last element in the vector and return it.
+    ///
+    /// Return `Some(` *element* `)` if the vector is non-empty, else `None`.
+    ///
+    /// ```
+    /// use arrayvec::copy::ArrayVecCopy;
+    ///
+    /// let mut array = ArrayVecCopy::<_, 2>::new();
+    ///
+    /// array.push(1);
+    ///
+    /// assert_eq!(array.pop(), Some(1));
+    /// assert_eq!(array.pop(), None);
+    /// ```
+    pub fn pop(&mut self) -> Option<T> {
+        ArrayVecImpl::pop(self)
+    }
+
+    /// Remove the element at `index` and swap the last element into its place.
+    ///
+    /// This operation is O(1).
+    ///
+    /// Return the *element* if the index is in bounds, else panic.
+    ///
+    /// ***Panics*** if the `index` is out of bounds.
+    ///
+    /// ```
+    /// use arrayvec::copy::ArrayVecCopy;
+    ///
+    /// let mut array = ArrayVecCopy::from([1, 2, 3]);
+    ///
+    /// assert_eq!(array.swap_remove(0), 1);
+    /// assert_eq!(&array[..], &[3, 2]);
+    ///
+    /// assert_eq!(array.swap_remove(1), 2);
+    /// assert_eq!(&array[..], &[3]);
+    /// ```
+    pub fn swap_remove(&mut self, index: usize) -> T {
+        self.swap_pop(index)
+            .unwrap_or_else(|| panic_oob!("swap_remove", index, self.len()))
+    }
+
+    /// Remove the element at `index` and swap the last element into its place.
+    ///
+    /// This is a checked version of `.swap_remove`.  
+    /// This operation is O(1).
+    ///
+    /// Return `Some(` *element* `)` if the index is in bounds, else `None`.
+    ///
+    /// ```
+    /// use arrayvec::copy::ArrayVecCopy;
+    ///
+    /// let mut array = ArrayVecCopy::from([1, 2, 3]);
+    ///
+    /// assert_eq!(array.swap_pop(0), Some(1));
+    /// assert_eq!(&array[..], &[3, 2]);
+    ///
+    /// assert_eq!(array.swap_pop(10), None);
+    /// ```
+    pub fn swap_pop(&mut self, index: usize) -> Option<T> {
+        let len = self.len();
+        if index >= len {
+            return None;
+        }
+        self.swap(index, len - 1);
+        self.pop()
+    }
+
+    /// Remove the element at `index` and shift down the following elements.
+    ///
+    /// The `index` must be strictly less than the length of the vector.
+    ///
+    /// ***Panics*** if the `index` is out of bounds.
+    ///
+    /// ```
+    /// use arrayvec::copy::ArrayVecCopy;
+    ///
+    /// let mut array = ArrayVecCopy::from([1, 2, 3]);
+    ///
+    /// let removed_elt = array.remove(0);
+    /// assert_eq!(removed_elt, 1);
+    /// assert_eq!(&array[..], &[2, 3]);
+    /// ```
+    pub fn remove(&mut self, index: usize) -> T {
+        self.pop_at(index)
+            .unwrap_or_else(|| panic_oob!("remove", index, self.len()))
+    }
+
+    /// Remove the element at `index` and shift down the following elements.
+    ///
+    /// This is a checked version of `.remove(index)`. Returns `None` if there
+    /// is no element at `index`. Otherwise, return the element inside `Some`.
+    ///
+    /// ```
+    /// use arrayvec::copy::ArrayVecCopy;
+    ///
+    /// let mut array = ArrayVecCopy::from([1, 2, 3]);
+    ///
+    /// assert!(array.pop_at(0).is_some());
+    /// assert_eq!(&array[..], &[2, 3]);
+    ///
+    /// assert!(array.pop_at(2).is_none());
+    /// assert!(array.pop_at(10).is_none());
+    /// ```
+    pub fn pop_at(&mut self, index: usize) -> Option<T> {
+        if index >= self.len() {
+            None
+        } else {
+            self.drain(index..index + 1).next()
+        }
+    }
+
+    /// Retains only the elements specified by the predicate.
+    ///
+    /// In other words, remove all elements `e` such that `f(&mut e)` returns false.
+    /// This method operates in place and preserves the order of the retained
+    /// elements.
+    ///
+    /// ```
+    /// use arrayvec::copy::ArrayVecCopy;
+    ///
+    /// let mut array = ArrayVecCopy::from([1, 2, 3, 4]);
+    /// array.retain(|x| *x & 1 != 0 );
+    /// assert_eq!(&array[..], &[1, 3]);
+    /// ```
+    pub fn retain<F>(&mut self, mut f: F)
+    where
+        F: FnMut(&mut T) -> bool,
+    {
+        // Check the implementation of
+        // https://doc.rust-lang.org/std/vec/struct.Vec.html#method.retain
+        // for safety arguments (especially regarding panics in f and when
+        // dropping elements). Implementation closely mirrored here.
+
+        let original_len = self.len();
+        unsafe { self.set_len(0) };
+
+        struct BackshiftOnDrop<'a, T: Copy, const CAP: usize> {
+            v: &'a mut ArrayVecCopy<T, CAP>,
+            processed_len: usize,
+            deleted_cnt: usize,
+            original_len: usize,
+        }
+
+        impl<T: Copy, const CAP: usize> Drop for BackshiftOnDrop<'_, T, CAP> {
+            fn drop(&mut self) {
+                if self.deleted_cnt > 0 {
+                    unsafe {
+                        ptr::copy(
+                            self.v.as_ptr().add(self.processed_len),
+                            self.v
+                                .as_mut_ptr()
+                                .add(self.processed_len - self.deleted_cnt),
+                            self.original_len - self.processed_len,
+                        );
+                    }
+                }
+                unsafe {
+                    self.v.set_len(self.original_len - self.deleted_cnt);
+                }
+            }
+        }
+
+        let mut g = BackshiftOnDrop {
+            v: self,
+            processed_len: 0,
+            deleted_cnt: 0,
+            original_len,
+        };
+
+        while g.processed_len < original_len {
+            let cur = unsafe { g.v.as_mut_ptr().add(g.processed_len) };
+            if !f(unsafe { &mut *cur }) {
+                g.processed_len += 1;
+                g.deleted_cnt += 1;
+                continue;
+            }
+            if g.deleted_cnt > 0 {
+                unsafe {
+                    let hole_slot = g.v.as_mut_ptr().add(g.processed_len - g.deleted_cnt);
+                    ptr::copy_nonoverlapping(cur, hole_slot, 1);
+                }
+            }
+            g.processed_len += 1;
+        }
+
+        drop(g);
+    }
+
+    /// Set the vector’s length without moving out elements
+    ///
+    /// This method is `unsafe` because it changes the notion of the
+    /// number of “valid” elements in the vector. Use with care.
+    ///
+    /// This method uses *debug assertions* to check that `length` is
+    /// not greater than the capacity.
+    pub unsafe fn set_len(&mut self, length: usize) {
+        // type invariant that capacity always fits in LenUint
+        debug_assert!(length <= self.capacity());
+        self.len = length as LenUint;
+    }
+
+    /// Copy all elements from the slice and append to the `ArrayVecCopy`.
+    ///
+    /// ```
+    /// use arrayvec::copy::ArrayVecCopy;
+    ///
+    /// let mut vec: ArrayVecCopy<usize, 10> = ArrayVecCopy::new();
+    /// vec.push(1);
+    /// vec.try_extend_from_slice(&[2, 3]).unwrap();
+    /// assert_eq!(&vec[..], &[1, 2, 3]);
+    /// ```
+    ///
+    /// # Errors
+    ///
+    /// This method will return an error if the capacity left (see
+    /// [`remaining_capacity`]) is smaller then the length of the provided
+    /// slice.
+    ///
+    /// [`remaining_capacity`]: #method.remaining_capacity
+    pub fn try_extend_from_slice(&mut self, other: &[T]) -> Result<(), CapacityError> {
+        if self.remaining_capacity() < other.len() {
+            return Err(CapacityError::new(()));
+        }
+
+        let self_len = self.len();
+        let other_len = other.len();
+
+        unsafe {
+            let dst = self.get_unchecked_ptr(self_len);
+            ptr::copy_nonoverlapping(other.as_ptr(), dst, other_len);
+            self.set_len(self_len + other_len);
+        }
+        Ok(())
+    }
+
+    /// Create a draining iterator that removes the specified range in the vector
+    /// and yields the removed items from start to end. The element range is
+    /// removed even if the iterator is not consumed until the end.
+    ///
+    /// Note: It is unspecified how many elements are removed from the vector,
+    /// if the `Drain` value is leaked.
+    ///
+    /// **Panics** if the starting point is greater than the end point or if
+    /// the end point is greater than the length of the vector.
+    ///
+    /// ```
+    /// use arrayvec::copy::ArrayVecCopy;
+    ///
+    /// let mut v1 = ArrayVecCopy::from([1, 2, 3]);
+    /// let v2: ArrayVecCopy<_, 3> = v1.drain(0..2).collect();
+    /// assert_eq!(&v1[..], &[3]);
+    /// assert_eq!(&v2[..], &[1, 2]);
+    /// ```
+    pub fn drain<R>(&mut self, range: R) -> Drain<T, CAP>
+    where
+        R: RangeBounds<usize>,
+    {
+        // Memory safety
+        //
+        // When the Drain is first created, it shortens the length of
+        // the source vector to make sure no uninitialized or moved-from elements
+        // are accessible at all if the Drain's destructor never gets to run.
+        //
+        // Drain will ptr::read out the values to remove.
+        // When finished, remaining tail of the vec is copied back to cover
+        // the hole, and the vector length is restored to the new length.
+        //
+        let len = self.len();
+        let start = match range.start_bound() {
+            Bound::Unbounded => 0,
+            Bound::Included(&i) => i,
+            Bound::Excluded(&i) => i.saturating_add(1),
+        };
+        let end = match range.end_bound() {
+            Bound::Excluded(&j) => j,
+            Bound::Included(&j) => j.saturating_add(1),
+            Bound::Unbounded => len,
+        };
+        self.drain_range(start, end)
+    }
+
+    fn drain_range(&mut self, start: usize, end: usize) -> Drain<T, CAP> {
+        let len = self.len();
+
+        // bounds check happens here (before length is changed!)
+        let range_slice: *const _ = &self[start..end];
+
+        // Calling `set_len` creates a fresh and thus unique mutable references, making all
+        // older aliases we created invalid. So we cannot call that function.
+        self.len = start as LenUint;
+
+        unsafe {
+            Drain {
+                tail_start: end,
+                tail_len: len - end,
+                iter: (*range_slice).iter(),
+                vec: self as *mut _,
+            }
+        }
+    }
+
+    /// Return the inner fixed size array, if it is full to its capacity.
+    ///
+    /// Return an `Ok` value with the array if length equals capacity,
+    /// return an `Err` with self otherwise.
+    pub fn into_inner(self) -> Result<[T; CAP], Self> {
+        if self.len() < self.capacity() {
+            Err(self)
+        } else {
+            unsafe { Ok(self.into_inner_unchecked()) }
+        }
+    }
+
+    /// Return the inner fixed size array.
+    ///
+    /// Safety:
+    /// This operation is safe if and only if length equals capacity.
+    pub unsafe fn into_inner_unchecked(self) -> [T; CAP] {
+        debug_assert_eq!(self.len(), self.capacity());
+        let array = ptr::read(self.as_ptr() as *const [T; CAP]);
+        array
+    }
+
+    /// Returns the ArrayVecCopy, replacing the original with a new empty ArrayVecCopy.
+    ///
+    /// ```
+    /// use arrayvec::copy::ArrayVecCopy;
+    ///
+    /// let mut v = ArrayVecCopy::from([0, 1, 2, 3]);
+    /// assert_eq!([0, 1, 2, 3], v.take().into_inner().unwrap());
+    /// assert!(v.is_empty());
+    /// ```
+    pub fn take(&mut self) -> Self {
+        mem::replace(self, Self::new())
+    }
+
+    /// Return a slice containing all elements of the vector.
+    pub fn as_slice(&self) -> &[T] {
+        ArrayVecImpl::as_slice(self)
+    }
+
+    /// Return a mutable slice containing all elements of the vector.
+    pub fn as_mut_slice(&mut self) -> &mut [T] {
+        ArrayVecImpl::as_mut_slice(self)
+    }
+
+    /// Return a raw pointer to the vector's buffer.
+    pub fn as_ptr(&self) -> *const T {
+        ArrayVecImpl::as_ptr(self)
+    }
+
+    /// Return a raw mutable pointer to the vector's buffer.
+    pub fn as_mut_ptr(&mut self) -> *mut T {
+        ArrayVecImpl::as_mut_ptr(self)
+    }
+}
+
+impl<T: Copy, const CAP: usize> ArrayVecImpl for ArrayVecCopy<T, CAP> {
+    type Item = T;
+    const CAPACITY: usize = CAP;
+
+    fn len(&self) -> usize {
+        self.len()
+    }
+
+    unsafe fn set_len(&mut self, length: usize) {
+        debug_assert!(length <= CAP);
+        self.len = length as LenUint;
+    }
+
+    fn as_ptr(&self) -> *const Self::Item {
+        self.xs.as_ptr() as _
+    }
+
+    fn as_mut_ptr(&mut self) -> *mut Self::Item {
+        self.xs.as_mut_ptr() as _
+    }
+}
+
+impl<T: Copy, const CAP: usize> Deref for ArrayVecCopy<T, CAP> {
+    type Target = [T];
+    #[inline]
+    fn deref(&self) -> &Self::Target {
+        self.as_slice()
+    }
+}
+
+impl<T: Copy, const CAP: usize> DerefMut for ArrayVecCopy<T, CAP> {
+    #[inline]
+    fn deref_mut(&mut self) -> &mut Self::Target {
+        self.as_mut_slice()
+    }
+}
+
+/// Create an `ArrayVecCopy` from an array.
+///
+/// ```
+/// use arrayvec::copy::ArrayVecCopy;
+///
+/// let mut array = ArrayVecCopy::from([1, 2, 3]);
+/// assert_eq!(array.len(), 3);
+/// assert_eq!(array.capacity(), 3);
+/// ```
+impl<T: Copy, const CAP: usize> From<[T; CAP]> for ArrayVecCopy<T, CAP> {
+    fn from(array: [T; CAP]) -> Self {
+        let mut vec = <ArrayVecCopy<T, CAP>>::new();
+        unsafe {
+            (&array as *const [T; CAP] as *const [MaybeUninit<T>; CAP])
+                .copy_to_nonoverlapping(&mut vec.xs as *mut [MaybeUninit<T>; CAP], 1);
+            vec.set_len(CAP);
+        }
+        vec
+    }
+}
+
+/// Try to create an `ArrayVecCopy` from a slice. This will return an error if the slice was too big to
+/// fit.
+///
+/// ```
+/// use arrayvec::copy::ArrayVecCopy;
+/// use std::convert::TryInto as _;
+///
+/// let array: ArrayVecCopy<_, 4> = (&[1, 2, 3] as &[_]).try_into().unwrap();
+/// assert_eq!(array.len(), 3);
+/// assert_eq!(array.capacity(), 4);
+/// ```
+impl<T: Copy, const CAP: usize> std::convert::TryFrom<&[T]> for ArrayVecCopy<T, CAP> {
+    type Error = CapacityError;
+
+    fn try_from(slice: &[T]) -> Result<Self, Self::Error> {
+        if Self::CAPACITY < slice.len() {
+            Err(CapacityError::new(()))
+        } else {
+            let mut array = Self::new();
+            array.extend_from_slice(slice);
+            Ok(array)
+        }
+    }
+}
+
+/// Iterate the `ArrayVecCopy` with references to each element.
+///
+/// ```
+/// use arrayvec::copy::ArrayVecCopy;
+///
+/// let array = ArrayVecCopy::from([1, 2, 3]);
+///
+/// for elt in &array {
+///     // ...
+/// }
+/// ```
+impl<'a, T: Copy + 'a, const CAP: usize> IntoIterator for &'a ArrayVecCopy<T, CAP> {
+    type Item = &'a T;
+    type IntoIter = slice::Iter<'a, T>;
+    fn into_iter(self) -> Self::IntoIter {
+        self.iter()
+    }
+}
+
+/// Iterate the `ArrayVecCopy` with mutable references to each element.
+///
+/// ```
+/// use arrayvec::copy::ArrayVecCopy;
+///
+/// let mut array = ArrayVecCopy::from([1, 2, 3]);
+///
+/// for elt in &mut array {
+///     // ...
+/// }
+/// ```
+impl<'a, T: Copy + 'a, const CAP: usize> IntoIterator for &'a mut ArrayVecCopy<T, CAP> {
+    type Item = &'a mut T;
+    type IntoIter = slice::IterMut<'a, T>;
+    fn into_iter(self) -> Self::IntoIter {
+        self.iter_mut()
+    }
+}
+
+/// Iterate the `ArrayVecCopy` with each element by value.
+///
+/// The vector is consumed by this operation.
+///
+/// ```
+/// use arrayvec::copy::ArrayVecCopy;
+///
+/// for elt in ArrayVecCopy::from([1, 2, 3]) {
+///     // ...
+/// }
+/// ```
+impl<T: Copy, const CAP: usize> IntoIterator for ArrayVecCopy<T, CAP> {
+    type Item = T;
+    type IntoIter = IntoIter<T, CAP>;
+    fn into_iter(self) -> IntoIter<T, CAP> {
+        IntoIter { index: 0, v: self }
+    }
+}
+
+/// By-value iterator for `ArrayVecCopy`.
+pub struct IntoIter<T: Copy, const CAP: usize> {
+    index: usize,
+    v: ArrayVecCopy<T, CAP>,
+}
+
+impl<T: Copy, const CAP: usize> Iterator for IntoIter<T, CAP> {
+    type Item = T;
+
+    fn next(&mut self) -> Option<Self::Item> {
+        if self.index == self.v.len() {
+            None
+        } else {
+            unsafe {
+                let index = self.index;
+                self.index = index + 1;
+                Some(ptr::read(self.v.get_unchecked_ptr(index)))
+            }
+        }
+    }
+
+    fn size_hint(&self) -> (usize, Option<usize>) {
+        let len = self.v.len() - self.index;
+        (len, Some(len))
+    }
+}
+
+impl<T: Copy, const CAP: usize> DoubleEndedIterator for IntoIter<T, CAP> {
+    fn next_back(&mut self) -> Option<Self::Item> {
+        if self.index == self.v.len() {
+            None
+        } else {
+            unsafe {
+                let new_len = self.v.len() - 1;
+                self.v.set_len(new_len);
+                Some(ptr::read(self.v.get_unchecked_ptr(new_len)))
+            }
+        }
+    }
+}
+
+impl<T: Copy, const CAP: usize> ExactSizeIterator for IntoIter<T, CAP> {}
+
+impl<T: Copy, const CAP: usize> Clone for IntoIter<T, CAP> {
+    fn clone(&self) -> IntoIter<T, CAP> {
+        let mut v = ArrayVecCopy::new();
+        v.extend_from_slice(&self.v[self.index..]);
+        v.into_iter()
+    }
+}
+
+impl<T: Copy, const CAP: usize> fmt::Debug for IntoIter<T, CAP>
+where
+    T: fmt::Debug,
+{
+    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+        f.debug_list().entries(&self.v[self.index..]).finish()
+    }
+}
+
+/// A draining iterator for `ArrayVecCopy`.
+pub struct Drain<'a, T: Copy + 'a, const CAP: usize> {
+    /// Index of tail to preserve
+    tail_start: usize,
+    /// Length of tail
+    tail_len: usize,
+    /// Current remaining range to remove
+    iter: slice::Iter<'a, T>,
+    vec: *mut ArrayVecCopy<T, CAP>,
+}
+
+unsafe impl<'a, T: Copy + Sync, const CAP: usize> Sync for Drain<'a, T, CAP> {}
+unsafe impl<'a, T: Copy + Send, const CAP: usize> Send for Drain<'a, T, CAP> {}
+
+impl<'a, T: Copy + 'a, const CAP: usize> Iterator for Drain<'a, T, CAP> {
+    type Item = T;
+
+    fn next(&mut self) -> Option<Self::Item> {
+        self.iter
+            .next()
+            .map(|elt| unsafe { ptr::read(elt as *const _) })
+    }
+
+    fn size_hint(&self) -> (usize, Option<usize>) {
+        self.iter.size_hint()
+    }
+}
+
+impl<'a, T: Copy + 'a, const CAP: usize> DoubleEndedIterator for Drain<'a, T, CAP> {
+    fn next_back(&mut self) -> Option<Self::Item> {
+        self.iter
+            .next_back()
+            .map(|elt| unsafe { ptr::read(elt as *const _) })
+    }
+}
+
+impl<'a, T: Copy + 'a, const CAP: usize> ExactSizeIterator for Drain<'a, T, CAP> {}
+
+impl<'a, T: Copy + 'a, const CAP: usize> Drop for Drain<'a, T, CAP> {
+    fn drop(&mut self) {
+        // len is currently 0 so panicking while dropping will not cause a double drop.
+
+        // exhaust self first
+        while let Some(_) = self.next() {}
+
+        if self.tail_len > 0 {
+            unsafe {
+                let source_vec = &mut *self.vec;
+                // memmove back untouched tail, update to new length
+                let start = source_vec.len();
+                let tail = self.tail_start;
+                let src = source_vec.as_ptr().add(tail);
+                let dst = source_vec.as_mut_ptr().add(start);
+                ptr::copy(src, dst, self.tail_len);
+                source_vec.set_len(start + self.tail_len);
+            }
+        }
+    }
+}
+
+struct ScopeExitGuard<T, Data, F>
+where
+    F: FnMut(&Data, &mut T),
+{
+    value: T,
+    data: Data,
+    f: F,
+}
+
+impl<T, Data, F> Drop for ScopeExitGuard<T, Data, F>
+where
+    F: FnMut(&Data, &mut T),
+{
+    fn drop(&mut self) {
+        (self.f)(&self.data, &mut self.value)
+    }
+}
+
+/// Extend the `ArrayVecCopy` with an iterator.
+///
+/// ***Panics*** if extending the vector exceeds its capacity.
+impl<T: Copy, const CAP: usize> Extend<T> for ArrayVecCopy<T, CAP> {
+    /// Extend the `ArrayVecCopy` with an iterator.
+    ///
+    /// ***Panics*** if extending the vector exceeds its capacity.
+    fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I) {
+        unsafe { self.extend_from_iter::<_, true>(iter) }
+    }
+}
+
+#[inline(never)]
+#[cold]
+fn extend_panic() {
+    panic!("ArrayVecCopy: capacity exceeded in extend/from_iter");
+}
+
+impl<T: Copy, const CAP: usize> ArrayVecCopy<T, CAP> {
+    /// Extend the arrayvec from the iterable.
+    ///
+    /// ## Safety
+    ///
+    /// Unsafe because if CHECK is false, the length of the input is not checked.
+    /// The caller must ensure the length of the input fits in the capacity.
+    pub(crate) unsafe fn extend_from_iter<I, const CHECK: bool>(&mut self, iterable: I)
+    where
+        I: IntoIterator<Item = T>,
+    {
+        if mem::size_of::<T>() == 0 {
+            let capacity = self.capacity();
+
+            let mut iter = iterable.into_iter();
+            loop {
+                if iter.next().is_some() {
+                    if self.len as usize == capacity && CHECK {
+                        extend_panic();
+                    }
+                    debug_assert_ne!(self.len as usize, capacity);
+                    self.len += 1;
+                } else {
+                    return; // success
+                }
+            }
+        } else {
+            let take = self.capacity() - self.len();
+            let len = self.len();
+            let mut ptr = self.as_mut_ptr().add(len);
+            let end_ptr = ptr.add(take);
+            // Keep the length in a separate variable, write it back on scope
+            // exit. To help the compiler with alias analysis and stuff.
+            // We update the length to handle panic in the iteration of the
+            // user's iterator, without dropping any elements on the floor.
+            let mut guard = ScopeExitGuard {
+                value: &mut self.len,
+                data: len,
+                f: move |&len, self_len| {
+                    **self_len = len as LenUint;
+                },
+            };
+            let mut iter = iterable.into_iter();
+            loop {
+                if let Some(elt) = iter.next() {
+                    if ptr == end_ptr && CHECK {
+                        extend_panic();
+                    }
+                    debug_assert_ne!(ptr, end_ptr);
+                    ptr.write(elt);
+                    ptr = ptr.add(1);
+                    guard.data += 1;
+                } else {
+                    return; // success
+                }
+            }
+        }
+    }
+
+    /// Extend the ArrayVecCopy with clones of elements from the slice;
+    /// the length of the slice must be <= the remaining capacity in the arrayvec.
+    pub(crate) fn extend_from_slice(&mut self, slice: &[T]) {
+        let take = self.capacity() - self.len();
+        debug_assert!(slice.len() <= take);
+        unsafe {
+            let slice = if take < slice.len() {
+                &slice[..take]
+            } else {
+                slice
+            };
+            self.extend_from_iter::<_, false>(slice.iter().cloned());
+        }
+    }
+}
+
+/// Create an `ArrayVecCopy` from an iterator.
+///
+/// ***Panics*** if the number of elements in the iterator exceeds the arrayvec's capacity.
+impl<T: Copy, const CAP: usize> iter::FromIterator<T> for ArrayVecCopy<T, CAP> {
+    /// Create an `ArrayVecCopy` from an iterator.
+    ///
+    /// ***Panics*** if the number of elements in the iterator exceeds the arrayvec's capacity.
+    fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> Self {
+        let mut array = ArrayVecCopy::new();
+        array.extend(iter);
+        array
+    }
+}
+
+impl<T: Copy, const CAP: usize> Clone for ArrayVecCopy<T, CAP> {
+    fn clone(&self) -> Self {
+        self.iter().cloned().collect()
+    }
+
+    fn clone_from(&mut self, rhs: &Self) {
+        // recursive case for the common prefix
+        let prefix = cmp::min(self.len(), rhs.len());
+        self[..prefix].clone_from_slice(&rhs[..prefix]);
+
+        if prefix < self.len() {
+            // rhs was shorter
+            self.truncate(prefix);
+        } else {
+            let rhs_elems = &rhs[self.len()..];
+            self.extend_from_slice(rhs_elems);
+        }
+    }
+}
+
+impl<T: Copy, const CAP: usize> Hash for ArrayVecCopy<T, CAP>
+where
+    T: Hash,
+{
+    fn hash<H: Hasher>(&self, state: &mut H) {
+        Hash::hash(&**self, state)
+    }
+}
+
+impl<T: Copy, const CAP: usize> PartialEq for ArrayVecCopy<T, CAP>
+where
+    T: PartialEq,
+{
+    fn eq(&self, other: &Self) -> bool {
+        **self == **other
+    }
+}
+
+impl<T: Copy, const CAP: usize> PartialEq<[T]> for ArrayVecCopy<T, CAP>
+where
+    T: PartialEq,
+{
+    fn eq(&self, other: &[T]) -> bool {
+        **self == *other
+    }
+}
+
+impl<T: Copy, const CAP: usize> Eq for ArrayVecCopy<T, CAP> where T: Eq {}
+
+impl<T: Copy, const CAP: usize> Borrow<[T]> for ArrayVecCopy<T, CAP> {
+    fn borrow(&self) -> &[T] {
+        self
+    }
+}
+
+impl<T: Copy, const CAP: usize> BorrowMut<[T]> for ArrayVecCopy<T, CAP> {
+    fn borrow_mut(&mut self) -> &mut [T] {
+        self
+    }
+}
+
+impl<T: Copy, const CAP: usize> AsRef<[T]> for ArrayVecCopy<T, CAP> {
+    fn as_ref(&self) -> &[T] {
+        self
+    }
+}
+
+impl<T: Copy, const CAP: usize> AsMut<[T]> for ArrayVecCopy<T, CAP> {
+    fn as_mut(&mut self) -> &mut [T] {
+        self
+    }
+}
+
+impl<T: Copy, const CAP: usize> fmt::Debug for ArrayVecCopy<T, CAP>
+where
+    T: fmt::Debug,
+{
+    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+        (**self).fmt(f)
+    }
+}
+
+impl<T: Copy, const CAP: usize> Default for ArrayVecCopy<T, CAP> {
+    /// Return an empty array
+    fn default() -> ArrayVecCopy<T, CAP> {
+        ArrayVecCopy::new()
+    }
+}
+
+impl<T: Copy, const CAP: usize> PartialOrd for ArrayVecCopy<T, CAP>
+where
+    T: PartialOrd,
+{
+    fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> {
+        (**self).partial_cmp(other)
+    }
+
+    fn lt(&self, other: &Self) -> bool {
+        (**self).lt(other)
+    }
+
+    fn le(&self, other: &Self) -> bool {
+        (**self).le(other)
+    }
+
+    fn ge(&self, other: &Self) -> bool {
+        (**self).ge(other)
+    }
+
+    fn gt(&self, other: &Self) -> bool {
+        (**self).gt(other)
+    }
+}
+
+impl<T: Copy, const CAP: usize> Ord for ArrayVecCopy<T, CAP>
+where
+    T: Ord,
+{
+    fn cmp(&self, other: &Self) -> cmp::Ordering {
+        (**self).cmp(other)
+    }
+}
+
+#[cfg(feature = "std")]
+/// `Write` appends written data to the end of the vector.
+///
+/// Requires `features="std"`.
+impl<const CAP: usize> io::Write for ArrayVecCopy<u8, CAP> {
+    fn write(&mut self, data: &[u8]) -> io::Result<usize> {
+        let len = cmp::min(self.remaining_capacity(), data.len());
+        let _result = self.try_extend_from_slice(&data[..len]);
+        debug_assert!(_result.is_ok());
+        Ok(len)
+    }
+    fn flush(&mut self) -> io::Result<()> {
+        Ok(())
+    }
+}
+
+#[cfg(feature = "serde")]
+/// Requires crate feature `"serde"`
+impl<T: Copy + Serialize, const CAP: usize> Serialize for ArrayVecCopy<T, CAP> {
+    fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
+    where
+        S: Serializer,
+    {
+        serializer.collect_seq(self)
+    }
+}
+
+#[cfg(feature = "serde")]
+/// Requires crate feature `"serde"`
+impl<'de, T: Copy + Deserialize<'de>, const CAP: usize> Deserialize<'de> for ArrayVecCopy<T, CAP> {
+    fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
+    where
+        D: Deserializer<'de>,
+    {
+        use serde::de::{Error, SeqAccess, Visitor};
+        use std::marker::PhantomData;
+
+        struct ArrayVecCopyVisitor<'de, T: Copy + Deserialize<'de>, const CAP: usize>(
+            PhantomData<(&'de (), [T; CAP])>,
+        );
+
+        impl<'de, T: Copy + Deserialize<'de>, const CAP: usize> Visitor<'de>
+            for ArrayVecCopyVisitor<'de, T, CAP>
+        {
+            type Value = ArrayVecCopy<T, CAP>;
+
+            fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
+                write!(formatter, "an array with no more than {} items", CAP)
+            }
+
+            fn visit_seq<SA>(self, mut seq: SA) -> Result<Self::Value, SA::Error>
+            where
+                SA: SeqAccess<'de>,
+            {
+                let mut values = ArrayVecCopy::<T, CAP>::new();
+
+                while let Some(value) = seq.next_element()? {
+                    if let Err(_) = values.try_push(value) {
+                        return Err(SA::Error::invalid_length(CAP + 1, &self));
+                    }
+                }
+
+                Ok(values)
+            }
+        }
+
+        deserializer.deserialize_seq(ArrayVecCopyVisitor::<T, CAP>(PhantomData))
+    }
+}
diff --git a/src/lib.rs b/src/lib.rs
index f9a2fe6..458645c 100644
--- a/src/lib.rs
+++ b/src/lib.rs
@@ -61,3 +61,10 @@ pub use crate::array_string::ArrayString;
 pub use crate::errors::CapacityError;
 
 pub use crate::arrayvec::{ArrayVec, IntoIter, Drain};
+
+#[cfg(feature = "copy")]
+mod arrayvec_copy;
+#[cfg(feature = "copy")]
+pub mod copy {
+    pub use crate::arrayvec_copy::{ArrayVecCopy, IntoIter, Drain};
+}
diff --git a/tests/tests_copy.rs b/tests/tests_copy.rs
new file mode 100644
index 0000000..7329bf7
--- /dev/null
+++ b/tests/tests_copy.rs
@@ -0,0 +1,432 @@
+#[allow(unused)]
+#[macro_use]
+extern crate matches;
+
+#[cfg(feature = "copy")]
+mod copy_tests {
+    extern crate arrayvec;
+
+    use arrayvec::copy::ArrayVecCopy;
+    use arrayvec::CapacityError;
+    use std::mem;
+
+    #[test]
+    fn test_simple() {
+        let mut vec: ArrayVecCopy<usize, 3> = ArrayVecCopy::new();
+
+        vec.push(4);
+        vec.push(10);
+        vec.push(11);
+
+        let real_vec: Vec<usize> = vec![4, 10, 11];
+
+        for (elt, vec_elt) in vec.iter().zip(real_vec.iter()) {
+            assert_eq!(elt, vec_elt);
+        }
+
+        assert_eq!(*vec, *real_vec);
+    }
+
+    #[test]
+    fn test_capacity_left() {
+        let mut vec: ArrayVecCopy<usize, 4> = ArrayVecCopy::new();
+        assert_eq!(vec.remaining_capacity(), 4);
+        vec.push(1);
+        assert_eq!(vec.remaining_capacity(), 3);
+        vec.push(2);
+        assert_eq!(vec.remaining_capacity(), 2);
+        vec.push(3);
+        assert_eq!(vec.remaining_capacity(), 1);
+        vec.push(4);
+        assert_eq!(vec.remaining_capacity(), 0);
+    }
+
+    #[test]
+    fn test_extend_from_slice() {
+        let mut vec: ArrayVecCopy<usize, 10> = ArrayVecCopy::new();
+
+        vec.try_extend_from_slice(&[1, 2, 3]).unwrap();
+        assert_eq!(vec.len(), 3);
+        assert_eq!(&vec[..], &[1, 2, 3]);
+        assert_eq!(vec.pop(), Some(3));
+        assert_eq!(&vec[..], &[1, 2]);
+    }
+
+    #[test]
+    fn test_extend_from_slice_error() {
+        let mut vec: ArrayVecCopy<usize, 10> = ArrayVecCopy::new();
+
+        vec.try_extend_from_slice(&[1, 2, 3]).unwrap();
+        let res = vec.try_extend_from_slice(&[0; 8]);
+        assert_matches!(res, Err(_));
+
+        let mut vec: ArrayVecCopy<usize, 0> = ArrayVecCopy::new();
+        let res = vec.try_extend_from_slice(&[0; 1]);
+        assert_matches!(res, Err(_));
+    }
+
+    #[test]
+    fn test_try_from_slice_error() {
+        use std::convert::TryInto as _;
+
+        let res: Result<ArrayVecCopy<_, 2>, _> = (&[1, 2, 3] as &[_]).try_into();
+        assert_matches!(res, Err(_));
+    }
+
+    #[test]
+    fn test_u16_index() {
+        const N: usize = 4096;
+        let mut vec: ArrayVecCopy<_, N> = ArrayVecCopy::new();
+        for _ in 0..N {
+            assert!(vec.try_push(1u8).is_ok());
+        }
+        assert!(vec.try_push(0).is_err());
+        assert_eq!(vec.len(), N);
+    }
+
+    #[test]
+    fn test_iter() {
+        let mut iter = ArrayVecCopy::from([1, 2, 3]).into_iter();
+        assert_eq!(iter.size_hint(), (3, Some(3)));
+        assert_eq!(iter.next_back(), Some(3));
+        assert_eq!(iter.next(), Some(1));
+        assert_eq!(iter.next_back(), Some(2));
+        assert_eq!(iter.size_hint(), (0, Some(0)));
+        assert_eq!(iter.next_back(), None);
+    }
+
+    #[test]
+    fn test_extend() {
+        let mut range = 0..10;
+
+        let mut array: ArrayVecCopy<_, 5> = range.by_ref().take(5).collect();
+        assert_eq!(&array[..], &[0, 1, 2, 3, 4]);
+        assert_eq!(range.next(), Some(5));
+
+        array.extend(range.by_ref().take(0));
+        assert_eq!(range.next(), Some(6));
+
+        let mut array: ArrayVecCopy<_, 10> = (0..3).collect();
+        assert_eq!(&array[..], &[0, 1, 2]);
+        array.extend(3..5);
+        assert_eq!(&array[..], &[0, 1, 2, 3, 4]);
+    }
+
+    #[should_panic]
+    #[test]
+    fn test_extend_capacity_panic_1() {
+        let mut range = 0..10;
+
+        let _: ArrayVecCopy<_, 5> = range.by_ref().collect();
+    }
+
+    #[should_panic]
+    #[test]
+    fn test_extend_capacity_panic_2() {
+        let mut range = 0..10;
+
+        let mut array: ArrayVecCopy<_, 5> = range.by_ref().take(5).collect();
+        assert_eq!(&array[..], &[0, 1, 2, 3, 4]);
+        assert_eq!(range.next(), Some(5));
+        array.extend(range.by_ref().take(1));
+    }
+
+    #[test]
+    fn test_is_send_sync() {
+        let data = ArrayVecCopy::<u8, 5>::new();
+        &data as &dyn Send;
+        &data as &dyn Sync;
+    }
+
+    #[test]
+    fn test_compact_size() {
+        // 4 bytes + padding + length
+        type ByteArray = ArrayVecCopy<u8, 4>;
+        println!("{}", mem::size_of::<ByteArray>());
+        assert!(mem::size_of::<ByteArray>() <= 2 * mem::size_of::<u32>());
+
+        // just length
+        type EmptyArray = ArrayVecCopy<u8, 0>;
+        println!("{}", mem::size_of::<EmptyArray>());
+        assert!(mem::size_of::<EmptyArray>() <= mem::size_of::<u32>());
+
+        // 3 elements + padding + length
+        type QuadArray = ArrayVecCopy<u32, 3>;
+        println!("{}", mem::size_of::<QuadArray>());
+        assert!(mem::size_of::<QuadArray>() <= 4 * 4 + mem::size_of::<u32>());
+    }
+
+    #[test]
+    fn test_still_works_with_option_arrayvec() {
+        type RefArray = ArrayVecCopy<&'static i32, 2>;
+        let array = Some(RefArray::new());
+        assert!(array.is_some());
+        println!("{:?}", array);
+    }
+
+    #[test]
+    fn test_drain() {
+        let mut v = ArrayVecCopy::from([0; 8]);
+        v.pop();
+        v.drain(0..7);
+        assert_eq!(&v[..], &[]);
+
+        v.extend(0..8);
+        v.drain(1..4);
+        assert_eq!(&v[..], &[0, 4, 5, 6, 7]);
+        let u: ArrayVecCopy<_, 3> = v.drain(1..4).rev().collect();
+        assert_eq!(&u[..], &[6, 5, 4]);
+        assert_eq!(&v[..], &[0, 7]);
+        v.drain(..);
+        assert_eq!(&v[..], &[]);
+    }
+
+    #[test]
+    fn test_drain_range_inclusive() {
+        let mut v = ArrayVecCopy::from([0; 8]);
+        v.drain(0..=7);
+        assert_eq!(&v[..], &[]);
+
+        v.extend(0..8);
+        v.drain(1..=4);
+        assert_eq!(&v[..], &[0, 5, 6, 7]);
+        let u: ArrayVecCopy<_, 3> = v.drain(1..=2).rev().collect();
+        assert_eq!(&u[..], &[6, 5]);
+        assert_eq!(&v[..], &[0, 7]);
+        v.drain(..);
+        assert_eq!(&v[..], &[]);
+    }
+
+    #[test]
+    #[should_panic]
+    fn test_drain_range_inclusive_oob() {
+        let mut v = ArrayVecCopy::from([0; 0]);
+        v.drain(0..=0);
+    }
+
+    #[test]
+    fn test_retain() {
+        let mut v = ArrayVecCopy::from([0; 8]);
+        for (i, elt) in v.iter_mut().enumerate() {
+            *elt = i;
+        }
+        v.retain(|_| true);
+        assert_eq!(&v[..], &[0, 1, 2, 3, 4, 5, 6, 7]);
+        v.retain(|elt| {
+            *elt /= 2;
+            *elt % 2 == 0
+        });
+        assert_eq!(&v[..], &[0, 0, 2, 2]);
+        v.retain(|_| false);
+        assert_eq!(&v[..], &[]);
+    }
+
+    #[test]
+    #[should_panic]
+    fn test_drain_oob() {
+        let mut v = ArrayVecCopy::from([0; 8]);
+        v.pop();
+        v.drain(0..8);
+    }
+
+    #[test]
+    fn test_insert() {
+        let mut v = ArrayVecCopy::from([]);
+        assert_matches!(v.try_push(1), Err(_));
+
+        let mut v = ArrayVecCopy::<_, 3>::new();
+        v.insert(0, 0);
+        v.insert(1, 1);
+        //let ret1 = v.try_insert(3, 3);
+        //assert_matches!(ret1, Err(InsertError::OutOfBounds(_)));
+        assert_eq!(&v[..], &[0, 1]);
+        v.insert(2, 2);
+        assert_eq!(&v[..], &[0, 1, 2]);
+
+        let ret2 = v.try_insert(1, 9);
+        assert_eq!(&v[..], &[0, 1, 2]);
+        assert_matches!(ret2, Err(_));
+
+        let mut v = ArrayVecCopy::from([2]);
+        assert_matches!(v.try_insert(0, 1), Err(CapacityError { .. }));
+        assert_matches!(v.try_insert(1, 1), Err(CapacityError { .. }));
+        //assert_matches!(v.try_insert(2, 1), Err(CapacityError { .. }));
+    }
+
+    #[test]
+    fn test_into_inner_1() {
+        let mut v = ArrayVecCopy::from([1, 2]);
+        v.pop();
+        let u = v.clone();
+        assert_eq!(v.into_inner(), Err(u));
+    }
+
+    #[test]
+    fn test_into_inner_2() {
+        let mut v = ArrayVecCopy::<char, 4>::new();
+        v.push('a');
+        v.push('b');
+        v.push('c');
+        v.push('d');
+        assert_eq!(v.into_inner().unwrap(), ['a', 'b', 'c', 'd']);
+    }
+
+    #[test]
+    fn test_into_inner_3() {
+        let mut v = ArrayVecCopy::<i32, 4>::new();
+        v.extend(1..=4);
+        assert_eq!(v.into_inner().unwrap(), [1, 2, 3, 4]);
+    }
+
+    #[test]
+    fn test_take() {
+        let mut v1 = ArrayVecCopy::<i32, 4>::new();
+        v1.extend(1..=4);
+        let v2 = v1.take();
+        assert!(v1.into_inner().is_err());
+        assert_eq!(v2.into_inner().unwrap(), [1, 2, 3, 4]);
+    }
+
+    #[cfg(feature = "std")]
+    #[test]
+    fn test_write() {
+        use std::io::Write;
+        let mut v = ArrayVecCopy::<_, 8>::new();
+        write!(&mut v, "\x01\x02\x03").unwrap();
+        assert_eq!(&v[..], &[1, 2, 3]);
+        let r = v.write(&[9; 16]).unwrap();
+        assert_eq!(r, 5);
+        assert_eq!(&v[..], &[1, 2, 3, 9, 9, 9, 9, 9]);
+    }
+
+    #[test]
+    fn array_clone_from() {
+        let mut v = ArrayVecCopy::<usize, 4>::new();
+        v.push(1);
+        v.push(5);
+        v.push(6);
+        let reference = v.to_vec();
+        let mut u = ArrayVecCopy::<usize, 4>::new();
+        u.clone_from(&v);
+        assert_eq!(&u, &reference[..]);
+
+        let mut t = ArrayVecCopy::<usize, 4>::new();
+        t.push(97);
+        t.push(0);
+        t.push(5);
+        t.push(2);
+        t.clone_from(&v);
+        assert_eq!(&t, &reference[..]);
+        t.clear();
+        t.clone_from(&v);
+        assert_eq!(&t, &reference[..]);
+    }
+
+    #[test]
+    fn test_insert_at_length() {
+        let mut v = ArrayVecCopy::<_, 8>::new();
+        let result1 = v.try_insert(0, "a");
+        let result2 = v.try_insert(1, "b");
+        assert!(result1.is_ok() && result2.is_ok());
+        assert_eq!(&v[..], &["a", "b"]);
+    }
+
+    #[should_panic]
+    #[test]
+    fn test_insert_out_of_bounds() {
+        let mut v = ArrayVecCopy::<_, 8>::new();
+        let _ = v.try_insert(1, "test");
+    }
+
+    #[test]
+    fn test_pop_at() {
+        let mut v = ArrayVecCopy::<&'static str, 4>::new();
+        v.push("a");
+        v.push("b");
+        v.push("c");
+        v.push("d");
+
+        assert_eq!(v.pop_at(4), None);
+        assert_eq!(v.pop_at(1), Some("b"));
+        assert_eq!(v.pop_at(1), Some("c"));
+        assert_eq!(v.pop_at(2), None);
+        assert_eq!(&v[..], &["a", "d"]);
+    }
+
+    #[test]
+    fn test_sizes() {
+        let v = ArrayVecCopy::from([0u8; 1 << 16]);
+        assert_eq!(vec![0u8; v.len()], &v[..]);
+    }
+
+    #[cfg(feature = "array-sizes-33-128")]
+    #[test]
+    fn test_sizes_33_128() {
+        ArrayVecCopy::from([0u8; 52]);
+        ArrayVecCopy::from([0u8; 127]);
+    }
+
+    #[cfg(feature = "array-sizes-129-255")]
+    #[test]
+    fn test_sizes_129_255() {
+        ArrayVecCopy::from([0u8; 237]);
+        ArrayVecCopy::from([0u8; 255]);
+    }
+
+    #[test]
+    fn test_extend_zst() {
+        let mut range = 0..10;
+        #[derive(Copy, Clone, PartialEq, Debug)]
+        struct Z; // Zero sized type
+
+        let mut array: ArrayVecCopy<_, 5> = range.by_ref().take(5).map(|_| Z).collect();
+        assert_eq!(&array[..], &[Z; 5]);
+        assert_eq!(range.next(), Some(5));
+
+        array.extend(range.by_ref().take(0).map(|_| Z));
+        assert_eq!(range.next(), Some(6));
+
+        let mut array: ArrayVecCopy<_, 10> = (0..3).map(|_| Z).collect();
+        assert_eq!(&array[..], &[Z; 3]);
+        array.extend((3..5).map(|_| Z));
+        assert_eq!(&array[..], &[Z; 5]);
+        assert_eq!(array.len(), 5);
+    }
+
+    #[test]
+    fn allow_max_capacity_arrayvec_type() {
+        // this type is allowed to be used (but can't be constructed)
+        let _v: ArrayVecCopy<(), { usize::MAX }>;
+    }
+
+    #[should_panic(expected = "largest supported capacity")]
+    #[test]
+    fn deny_max_capacity_arrayvec_value() {
+        if mem::size_of::<usize>() <= mem::size_of::<u32>() {
+            panic!("This test does not work on this platform. 'largest supported capacity'");
+        }
+        // this type is allowed to be used (but can't be constructed)
+        let _v: ArrayVecCopy<(), { usize::MAX }> = ArrayVecCopy::new();
+    }
+
+    #[should_panic(expected = "index out of bounds")]
+    #[test]
+    fn deny_max_capacity_arrayvec_value_const() {
+        if mem::size_of::<usize>() <= mem::size_of::<u32>() {
+            panic!("This test does not work on this platform. 'index out of bounds'");
+        }
+        // this type is allowed to be used (but can't be constructed)
+        let _v: ArrayVecCopy<(), { usize::MAX }> = ArrayVecCopy::new_const();
+    }
+
+    #[test]
+    fn test_arrayvec_const_constructible() {
+        const OF_U8: ArrayVecCopy<u8, 10> = ArrayVecCopy::new_const();
+
+        let mut var = OF_U8;
+        assert!(var.is_empty());
+        assert_eq!(var, ArrayVecCopy::new());
+        var.push(3);
+        assert_eq!(var[..], [3]);
+    }
+}