-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclients.py
306 lines (262 loc) · 12.9 KB
/
clients.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
import pickle
from typing import List, Dict, Tuple
import flwr as fl
import numpy as np
import torch
from flwr.common import Scalar
from torch import nn
from torch.nn.modules.loss import _Loss
from torch.utils.data import DataLoader
from tqdm import tqdm
import attack_model
import settings
from data_loader import CombinedDataLoader
from model import FLNet
from settings import DEVICE
from utils import one_hot_encode
class FlowerClient(fl.client.NumPyClient):
"""
Default implementation of a client participating in the Federated Learning protocol.
"""
net: FLNet
train_loader: DataLoader
val_loader: DataLoader
criterion: _Loss
def __init__(self, net: FLNet, train_loader: DataLoader, val_loader: DataLoader,
criterion: _Loss):
"""
Initialise a standard FL client.
:param net: Network to train
:param train_loader: Dataset of the client
:param val_loader: Validation dataset of the client
:param criterion: Loss function
"""
self.net = net
self.train_loader = train_loader
self.val_loader = val_loader
self.criterion = criterion
def get_parameters(self, config) -> List[np.ndarray]:
"""
Return the parameters. Needed by Flwr.
:param config:
:return:
"""
return self.net.get_parameters()
def set_parameters(self, parameters: List[np.ndarray]):
"""
Set the parameters. Needed by Flwr.
:param parameters:
:return:
"""
self.net.set_parameters(parameters)
def fit(self, parameters: List[np.ndarray], config):
"""
Train the model given the parameters from the server and return the updated parameters and number of samples.
:param parameters: Model parameters
:param config:
:return:
"""
self.net.set_parameters(parameters)
self.train()
return self.net.get_parameters(), len(self.train_loader), {}
def evaluate(self, parameters: List[np.ndarray], config: Dict[str, Scalar]) -> Tuple[float, int, Dict[str, Scalar]]:
"""
Evaluate the model given the test loader.
:param parameters:
:param config:
:return:
"""
self.net.set_parameters(parameters)
loss, accuracy = self.test()
return float(loss), len(self.val_loader), {"accuracy": float(accuracy)}
def train(self, optimizer=settings.OPTIMIZER, epochs=1, verbose=False):
"""
Train the model given an optimizer.
:param optimizer:
:param epochs:
:param verbose:
:return:
"""
self.net.train()
optimizer = optimizer(self.net.parameters(), lr=1e-3)
for epoch in range(epochs):
correct, total, epoch_loss = 0, 0, 0.0
for batch in self.train_loader:
images, labels = batch["img"].to(DEVICE), batch["label"].to(DEVICE)
optimizer.zero_grad()
output, _ = self.net(images)
loss = self.criterion(output, labels)
loss.backward()
optimizer.step()
# Metrics
epoch_loss += loss
total += labels.size(0)
correct += (torch.max(output.data, 1)[1] == labels).sum().item()
epoch_loss /= len(self.train_loader.dataset)
epoch_acc = correct / total
if verbose:
print(f"Epoch {epoch + 1}: train loss {epoch_loss}, accuracy {epoch_acc}")
def test(self):
"""
Test the model given a test dataset.
:return:
"""
correct, total, loss = 0, 0, 0.0
self.net.eval()
with torch.no_grad():
for batch in self.val_loader:
images, labels = batch["img"].to(DEVICE), batch["label"].to(DEVICE)
output, _ = self.net(images)
loss += self.criterion(output, labels).item()
_, predicted = torch.max(output.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
loss /= len(self.val_loader)
accuracy = correct / total
return loss, accuracy
class AttackerFlowerClient(FlowerClient):
"""
Extension to the FlowerClient which has attacker functionalities. An instance can simulate an attack in the FL
protocol.
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.attack_model = None
self.experiment = None
def evaluate(self, parameters: List[np.ndarray], config: Dict[str, Scalar]) -> Tuple[float, int, Dict[str, Scalar]]:
"""
Override the evaluate function, as to collect data during the execution of the protocol.
:param parameters:
:param config:
:return:
"""
# Load the stored pickle file, if exists. Otherwise, create a new dictionary. Clients are stateless in Flwr.
try:
data = pickle.load(open(f'trained_target_model-{settings.TARGET_MODEL}-{"Generate" if settings.GENERATE else settings.DATASET}-{settings.NUM_ROUNDS}-{settings.NUM_CLIENTS}.pickle', 'rb'))
except FileNotFoundError:
print("No model of previous round found. Creating new one.")
data = {'round': 1, 'model': {}}
data['model'][data['round']] = parameters
data['round'] += 1
pickle.dump(data, open(f'trained_target_model-{settings.TARGET_MODEL}-{"Generate" if settings.GENERATE else settings.DATASET}-{settings.NUM_ROUNDS}-{settings.NUM_CLIENTS}.pickle', 'wb+'))
return super().evaluate(parameters, config)
def gather_results(self, data_points, label, weights):
for _, datapoint in data_points:
data = self.gather_features(datapoint, weights)
data['label'] = label
yield data
def attack(self, weights: Dict, training_members, training_non_members, test_members, test_non_members, experiment):
summary = []
self.net.to(settings.DEVICE2)
# Shuffle members and non-members.
training_loader = CombinedDataLoader({1: training_members, 0: training_non_members}, weights, self)
testing_loader = CombinedDataLoader({1: test_members, 0: test_non_members}, weights, self)
summary.extend(self.train_attack_model(training_loader, testing_loader, experiment))
with open(f"{settings.STORAGE_PATH}/trained_attack_model.pickle", "wb") as f:
pickle.dump(self.attack_model, f)
print("Done training, going to start testing...")
acc = self.test_attack_model(testing_loader, experiment, settings.ATTACK_MODEL_EPOCHS)
summary.append(f"Final accuracy: {acc:.4f} after {settings.ATTACK_MODEL_EPOCHS} epochs.")
return summary, self.attack_model
def gather_features(self, datapoint, weights):
# Simulate all rounds in the protocol
true_label = one_hot_encode(datapoint['label']).to(settings.DEVICE2).requires_grad_(True)
attack_features = {'true_label': true_label.requires_grad_(True), 'loss': [], 'layers': {}, 'gradients': {}}
weights = weights['model']
# Once this supported selection of rounds, e.g. [25, 50, 75, 100] would pick these rounds.
# No clue if that still works.
if isinstance(settings.ATTACK_MODEL_NUM_ROUNDS_INPUT, int):
rnds = list(weights.keys())[-1 * settings.ATTACK_MODEL_NUM_ROUNDS_INPUT:]
else:
rnds = settings.ATTACK_MODEL_NUM_ROUNDS_INPUT
for rnd in rnds:
# 1. Initialise the model to the round
self.net.set_parameters(weights[rnd])
self.net.train()
optimizer = settings.OPTIMIZER(self.net.parameters())
# 2. Calculate all hidden layer values for given datapoint
optimizer.zero_grad()
prediction, layers = self.net(datapoint['img'].to(settings.DEVICE2).requires_grad_(True))
# 3. Calculate the gradients of all weights w.r.t. datapoint
# 3.1 Calculate the loss and gradients of the given datapoint
loss = self.criterion(prediction.requires_grad_(True), datapoint['label'].type(torch.LongTensor).to(settings.DEVICE2))
loss.backward()
optimizer.step()
attack_features['loss'].append(loss.item())
for layer_id in range(len(layers)):
if layer_id not in attack_features['layers'].keys():
attack_features['layers'][layer_id] = []
attack_features['layers'][layer_id].append(layers[layer_id].detach())
# 3.2 Filter out all bias layers
weight_layers = []
for name, _ in self.net.named_parameters():
if 'weight' in name:
weight_layers.append(name.split('.')[0])
# 3.3 Append all weight-gradient layers.
for gradient_id in range(len(weight_layers)):
if gradient_id not in attack_features['gradients'].keys():
attack_features['gradients'][gradient_id] = []
attack_features['gradients'][gradient_id].append(
getattr(self.net, weight_layers[gradient_id]).weight.grad.detach())
attack_features['loss'] = torch.tensor(attack_features['loss'])
return attack_features
def train_attack_model(self, train_loaders, test_loaders, experiment):
summary = []
# Do some first time calculations
for idx, item in enumerate(train_loaders):
first_datapoint = {'x_output': item['layers'], 'x_true_label': item.get('true_label', None).clone().detach().requires_grad_(True).to(settings.DEVICE2), 'x_loss': item['loss'], 'x_grad': item['gradients'],
'x_in_training_data': item['label']}
break
cuda_count = 1
self.attack_model = attack_model.AttackModel(first_datapoint, num_cuda=cuda_count) if cuda_count > 0 else attack_model.AttackModel(first_datapoint)
criterion = nn.MSELoss()
optimizer = torch.optim.Adam(params=self.attack_model.parameters(), lr=0.0001)
for epoch in range(settings.ATTACK_MODEL_EPOCHS):
print("Epoch ", epoch)
for batch_idx, item in tqdm(enumerate(train_loaders), total=len(train_loaders)):
x_hidden_layers = item['layers']
x_true_label = item.get('true_label', None).clone().detach().requires_grad_(True).to(settings.DEVICE2)
x_loss = item['loss']
x_gradients = item['gradients']
y_label = item['label']
if y_label.size(0) != settings.ATTACK_MODEL_BATCH_SIZE:
continue
optimizer.zero_grad()
outputs = self.attack_model(x_hidden_layers, x_loss, x_true_label, x_gradients)
loss = criterion(torch.squeeze(outputs), y_label.squeeze(-1).type(torch.FloatTensor).to(settings.DEVICE2))
# Backward and optimize
loss.backward()
optimizer.step()
print(f'Epoch [{epoch + 1}/{settings.ATTACK_MODEL_EPOCHS}], Loss: {loss.item():.4f}')
acc = self.test_attack_model(test_loaders, experiment, epoch + 1)
summary.append(f"Epoch [{epoch + 1}/{settings.ATTACK_MODEL_EPOCHS}], Loss: {loss.item():.4f}, Accuracy: {acc:.4f}")
self.experiment.log_metric("Accuracy", acc, epoch=epoch+1)
self.experiment.log_metric("Loss", loss.item(), epoch=epoch+1)
return summary
def test_attack_model(self, test_loaders, experiment, i):
# Evaluation
correct = 0
total = 0
y_true = []
y_pred = []
for batch_idx, item in tqdm(enumerate(test_loaders), total=len(test_loaders)):
x_hidden_layers = item['layers']
x_true_label = item.get('true_label', None).clone().detach().requires_grad_(True).to(settings.DEVICE2)
x_loss = item['loss']
x_gradients = item['gradients']
target = item['label']
if target.size(0) != settings.ATTACK_MODEL_BATCH_SIZE:
continue
with torch.no_grad():
self.attack_model.eval()
outputs = self.attack_model(x_hidden_layers, x_loss, x_true_label, x_gradients)
predicted = (outputs >= 0.5).float().squeeze()
target = target.float().squeeze()
y_pred.extend(list(int(x) for x in predicted.cpu().numpy()))
y_true.extend(list(int(x) for x in target.cpu().numpy()))
total += target.size(0)
correct += (predicted.cpu() == target.cpu()).sum().item()
print(f"Correct: {(predicted.cpu() == target.cpu()).sum().item()}, Total: {target.size(0)}, predictions: {predicted}, truth: {target}")
print(f'Accuracy: {100 * correct / total}%')
experiment.log_confusion_matrix(y_true=y_true, y_predicted=y_pred, labels=["Non-member", "Member"], title=f"Confusion matrix epoch {i}", epoch=i)
return 100 * correct / total