|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": {}, |
| 6 | + "source": [ |
| 7 | + "# Data storage\n", |
| 8 | + "\n", |
| 9 | + "Python provides file read write and object serialisation / reconstruction (python pickle module). `numpy` provides methods for storing and retrieving structured arrays quickly and efficiently (including data compression). `scipy` provides some helper functions for common file formats such as `netcdf` and `matlab` etc etc.\n", |
| 10 | + "\n", |
| 11 | + "Sometimes data are hard won - and reformatting them into easily retrieved files can be a lifesaver." |
| 12 | + ] |
| 13 | + }, |
| 14 | + { |
| 15 | + "cell_type": "code", |
| 16 | + "execution_count": 2, |
| 17 | + "metadata": {}, |
| 18 | + "outputs": [], |
| 19 | + "source": [ |
| 20 | + "import numpy as np\n", |
| 21 | + "from scipy.io import netcdf" |
| 22 | + ] |
| 23 | + }, |
| 24 | + { |
| 25 | + "cell_type": "markdown", |
| 26 | + "metadata": {}, |
| 27 | + "source": [ |
| 28 | + "## text-based data files\n", |
| 29 | + "\n", |
| 30 | + "Completely portable and human readable, text-based formats are common outputs from simple scripted programs, web searches, program logs etc. Reading and writing them is trivial, and it is easy to append information to a file. The only problem is that the conversion can be extremely slow. \n", |
| 31 | + "\n", |
| 32 | + "This example is taken from our mapping exercise and shows the benefit of converting data to binary formats.\n", |
| 33 | + "\n", |
| 34 | + "---\n", |
| 35 | + "\n", |
| 36 | + "```python\n", |
| 37 | + "\n", |
| 38 | + "# Seafloor age data and global image - data from Earthbyters\n", |
| 39 | + "\n", |
| 40 | + "# The data come as ascii lon / lat / age tuples with NaN for no data. \n", |
| 41 | + "# This can be loaded with ...\n", |
| 42 | + "\n", |
| 43 | + "age = np.loadtxt(\"global_age_data.3.6.xyz\")\n", |
| 44 | + "age_data = age.reshape(1801,3601,3) # I looked at the data and figured out what numbers to use\n", |
| 45 | + "age_img = age_data[:,:,2]\n", |
| 46 | + "\n", |
| 47 | + "# But this is super slow, so I have just stored the Age data on the grid (1801 x 3601) which we can reconstruct easily\n", |
| 48 | + "\n", |
| 49 | + "datasize = (1801, 3601, 3)\n", |
| 50 | + "age_data = np.empty(datasize)\n", |
| 51 | + "\n", |
| 52 | + "ages = np.load(\"global_age_data.3.6.z.npz\")[\"ageData\"]\n", |
| 53 | + "\n", |
| 54 | + "lats = np.linspace(90, -90, datasize[0])\n", |
| 55 | + "lons = np.linspace(-180.0,180.0, datasize[1])\n", |
| 56 | + "\n", |
| 57 | + "arrlons,arrlats = np.meshgrid(lons, lats)\n", |
| 58 | + "\n", |
| 59 | + "age_data[...,0] = arrlons[...]\n", |
| 60 | + "age_data[...,1] = arrlats[...]\n", |
| 61 | + "age_data[...,2] = ages[...]\n", |
| 62 | + "```\n", |
| 63 | + "\n", |
| 64 | + "\n", |
| 65 | + "---\n", |
| 66 | + "\n", |
| 67 | + "The timing comparison is astonishing\n", |
| 68 | + "\n", |
| 69 | + "On my laptop the numpy binary file is about a million times faster to read. I cut out the lat/lon values from this file to save some space, but this would add, at most, a factor of 3 to the npz timing. " |
| 70 | + ] |
| 71 | + }, |
| 72 | + { |
| 73 | + "cell_type": "code", |
| 74 | + "execution_count": 12, |
| 75 | + "metadata": {}, |
| 76 | + "outputs": [ |
| 77 | + { |
| 78 | + "name": "stdout", |
| 79 | + "output_type": "stream", |
| 80 | + "text": [ |
| 81 | + "28.5 s ± 104 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)\n" |
| 82 | + ] |
| 83 | + } |
| 84 | + ], |
| 85 | + "source": [ |
| 86 | + "%%timeit\n", |
| 87 | + "\n", |
| 88 | + "gadtxt = np.loadtxt(\"../../Data/Resources/global_age_data.3.6.xyz\")" |
| 89 | + ] |
| 90 | + }, |
| 91 | + { |
| 92 | + "cell_type": "code", |
| 93 | + "execution_count": 13, |
| 94 | + "metadata": {}, |
| 95 | + "outputs": [ |
| 96 | + { |
| 97 | + "name": "stdout", |
| 98 | + "output_type": "stream", |
| 99 | + "text": [ |
| 100 | + "35.7 µs ± 130 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)\n" |
| 101 | + ] |
| 102 | + } |
| 103 | + ], |
| 104 | + "source": [ |
| 105 | + "%%timeit\n", |
| 106 | + "\n", |
| 107 | + "gadnpy = np.load(\"../../Data/Resources/global_age_data.3.6.z.npz\")" |
| 108 | + ] |
| 109 | + }, |
| 110 | + { |
| 111 | + "cell_type": "markdown", |
| 112 | + "metadata": {}, |
| 113 | + "source": [ |
| 114 | + "## netcdf\n", |
| 115 | + "\n", |
| 116 | + "Many earth-science datasets are stored in the `netcdf` format. `scipy` provides a reader for this format" |
| 117 | + ] |
| 118 | + }, |
| 119 | + { |
| 120 | + "cell_type": "code", |
| 121 | + "execution_count": 9, |
| 122 | + "metadata": {}, |
| 123 | + "outputs": [ |
| 124 | + { |
| 125 | + "name": "stdout", |
| 126 | + "output_type": "stream", |
| 127 | + "text": [ |
| 128 | + "OrderedDict([('lat', 161), ('lon', 360)])\n", |
| 129 | + "OrderedDict([('ve', <scipy.io.netcdf.netcdf_variable object at 0x7f34817cf940>),\n", |
| 130 | + " ('vn', <scipy.io.netcdf.netcdf_variable object at 0x7f34817cf908>),\n", |
| 131 | + " ('lat',\n", |
| 132 | + " <scipy.io.netcdf.netcdf_variable object at 0x7f34817cf9e8>),\n", |
| 133 | + " ('lon',\n", |
| 134 | + " <scipy.io.netcdf.netcdf_variable object at 0x7f34817cfa90>)])\n", |
| 135 | + "(161,)\n", |
| 136 | + "(360,)\n", |
| 137 | + "(360, 161)\n", |
| 138 | + "(360, 161)\n" |
| 139 | + ] |
| 140 | + } |
| 141 | + ], |
| 142 | + "source": [ |
| 143 | + "nf = netcdf.netcdf_file(filename=\"../../Data/Reference/velocity_AU.nc\")\n", |
| 144 | + "\n", |
| 145 | + "from pprint import pprint # pretty printer for python objects\n", |
| 146 | + "\n", |
| 147 | + "pprint( nf.dimensions )\n", |
| 148 | + "pprint( nf.variables )\n", |
| 149 | + "\n", |
| 150 | + "print (nf.variables[\"lat\"].data.shape)\n", |
| 151 | + "print (nf.variables[\"lon\"].data.shape)\n", |
| 152 | + "print (nf.variables['ve'].data.shape)\n", |
| 153 | + "print (nf.variables['vn'].data.shape)" |
| 154 | + ] |
| 155 | + }, |
| 156 | + { |
| 157 | + "cell_type": "code", |
| 158 | + "execution_count": null, |
| 159 | + "metadata": {}, |
| 160 | + "outputs": [], |
| 161 | + "source": [] |
| 162 | + } |
| 163 | + ], |
| 164 | + "metadata": { |
| 165 | + "kernelspec": { |
| 166 | + "display_name": "Python 3", |
| 167 | + "language": "python", |
| 168 | + "name": "python3" |
| 169 | + }, |
| 170 | + "language_info": { |
| 171 | + "codemirror_mode": { |
| 172 | + "name": "ipython", |
| 173 | + "version": 3 |
| 174 | + }, |
| 175 | + "file_extension": ".py", |
| 176 | + "mimetype": "text/x-python", |
| 177 | + "name": "python", |
| 178 | + "nbconvert_exporter": "python", |
| 179 | + "pygments_lexer": "ipython3", |
| 180 | + "version": "3.6.8" |
| 181 | + } |
| 182 | + }, |
| 183 | + "nbformat": 4, |
| 184 | + "nbformat_minor": 2 |
| 185 | +} |
0 commit comments