-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path52_law_of_gravity.py
29 lines (21 loc) · 1.62 KB
/
52_law_of_gravity.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
#Our three new dictionaries for the mass of planets and their distances
mass = {"Jupiter": 1.8986*(10**27), "Saturn": 5.6846*(10**26), "Neptune": 10.243*(10**25), "Uranus": 8.68*(10**25), "Earth": 5.9736*(10**24), "Venus": 4.8685*(10**24), "Mars": 6.4185*(10**23), "Mercury": 3.3022*(10**23)}
close_distance = {"Jupiter": 741*(10**9), "Saturn": 1.35*(10**12), "Neptune": 4.45*(10**12), "Uranus": 2.75*(10**12), "Earth": 147*(10**9), "Venus": 107*(10**9), "Mars": 205*(10**9), "Mercury": 46*(10**9)}
far_distance = {"Jupiter": 817*(10**9), "Saturn": 1.51*(10**12), "Neptune": 4.55*(10**12), "Uranus": 3*(10**12), "Earth": 152*(10**9), "Venus": 109*(10**9), "Mars": 249*(10**9), "Mercury": 70*(10**9)}
planet_list = ["Jupiter", "Saturn", "Neptune", "Uranus", "Earth", "Venus", "Mars", "Mercury"]
m_1 = 1.9891*(10**30) #The mass of the Sun
index = 0
while index < 8:
planet = planet_list[index] #The name of the current planet
m_2 = mass[planet] #The mass of the current plan
print("Force when " + planet + " is close to the Sun")
d = close_distance[planet] #The distance when the planet is close
G = 6.673*(10**(-11)) #The gravitational constant
F = (G*m_1*m_2)/(d**2) #Calculate the force
print(F) #Print the value found
print("Force when " + planet + " is far from the Sun")
d = far_distance[planet] #The distance when the planet is far
G = 6.673*(10**(-11)) #The gravitational constant
F = (G*m_1*m_2)/(d**2) #Calculate the force
print(F) #Print the value found
index = index + 1 #Increment the index