Official codebase for "Falcon: Fast Visuomotor Policies via Partial Denoising". This repository is based on Diffusion Policy.
See the original Diffusion Policy repo for installation.
Our contributions to the repo are:
- The definition of state-based Falcon, in
diffusion_policy/policy, in the filefalcon_unet_lowdim_policy.py. - Some utils about Falcon in
diffusion_policy/common/falcon_util.py - The modified model architecture in
diffusion_policy/model/diffusion/parallel_conditional_unet1d.py - The evaluation in
eval_falcon.py
We only support evaluation with single env. For streaming diffusion policy baseline, please refer to their codebase.
Download checkpoints from the official Diffusion Policy repo
checkpoint_path=<checkpoint_path>
device="cuda:0"
seed=<seed>
output_dir="eval_dir/can_ph/diffusion_policy_cnn/ddpm/seed_${seed}"
epsilon=<threshold>
delta=<exploration_rate>
k_min=<minimum_noise_level>
max_buffersz=<buffer_size>
temperature=<temperature>
python eval.py --checkpoint $checkpoint_path \
-o $output_dir \
-d $device \
--scheduler ddpm \
--seed $seedcheckpoint_path=<checkpoint_path>
device="cuda:0"
seed=<seed>
output_dir="eval_dir/can_ph/diffusion_policy_cnn/falconddpm/seed_${seed}"
epsilon=<threshold>
delta=<exploration_rate>
k_min=<minimum_noise_level>
max_buffersz=<buffer_size>
temperature=<temperature>
python eval.py --checkpoint $checkpoint_path \
-o $output_dir \
-d $device \
--scheduler falconddpm \
--epsilon $epsilon \
--delta $delta \
--k_min $k_min \
--max_buffersz $max_buffersz \
--temperature $temperature \
--seed $seedIf you find our work useful, please consider citing our paper:
@article{chen2025fast,
title={Fast Visuomotor Policies via Partial Denoising},
author={Chen, Haojun and Liu, Minghao and Ma, Xiaojian and Ma, Zailin and Wu, Huimin and Ma, Chengdong and Chen, Yuanpei and Zhong, Yifan and Wang, Mingzhi and Li, Qing and others},
journal={arXiv preprint arXiv:2503.00339},
year={2025}
}We thank the authors of Diffusion Policy and Streaming Diffusion Policy for sharing their codebase.
