-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMission_to_Mars_Challenge.py
333 lines (170 loc) · 5.77 KB
/
Mission_to_Mars_Challenge.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
#!/usr/bin/env python
# coding: utf-8
# # 10.3.3 Scrape Mars Data
# ### The News
# In[1]:
# Import Splinter and BeautifulSoup
from splinter import Browser
from bs4 import BeautifulSoup as soup
import pandas as pd
# In[2]:
# Set the executable path and initialize the chrome browser in splinter
executable_path = {'executable_path': r'C:\Users\bellc\Downloads\chromedriver.exe'}
browser = Browser('chrome', **executable_path)
# In[3]:
# Visit the mars nasa news site
url = 'https://mars.nasa.gov/news/'
browser.visit(url)
# Optional delay for loading the page
browser.is_element_present_by_css("ul.item_list li.slide", wait_time=1)
# In[4]:
html = browser.html
news_soup = soup(html, 'html.parser')
slide_elem = news_soup.select_one('ul.item_list li.slide')
# In[5]:
slide_elem.find("div", class_='content_title')
# In[6]:
# Use the parent element to find the first `a` tag and save it as `news_title`
news_title = slide_elem.find("div", class_='content_title').get_text()
news_title
# In[7]:
# Use the parent element to find the paragraph text
news_p = slide_elem.find('div', class_="article_teaser_body").get_text()
news_p
# # 10.3.4 Scrape Mars Data
# ### Featured Images
# In[8]:
# Visit URL
url = 'https://data-class-jpl-space.s3.amazonaws.com/JPL_Space/index.html'
browser.visit(url)
# In[9]:
# Find and click the full image button
full_image_elem = browser.find_by_tag('button')[1]
full_image_elem.click()
# In[10]:
# Parse the resulting html with soup
html = browser.html
img_soup = soup(html, 'html.parser')
# In[11]:
# Find the relative image url
img_url_rel = img_soup.find('img', class_='fancybox-image').get('src')
img_url_rel
# In[12]:
# Use the base URL to create an absolute URL
img_url = f'https://data-class-jpl-space.s3.amazonaws.com/JPL_Space/{img_url_rel}'
img_url
# # 10.3.5 Scrape Mars Data
# ### Mars Facts
# In[13]:
df = pd.read_html('http://space-facts.com/mars/')[0]
df.columns=['description', 'value']
df.set_index('description', inplace=True)
df
# In[14]:
df.to_html()
# In[15]:
browser.quit()
# # Starter Code Begins Below
# In[16]:
# Import Splinter, BeautifulSoup, and Pandas
from splinter import Browser
from bs4 import BeautifulSoup as soup
import pandas as pd
from webdriver_manager.chrome import ChromeDriverManager
# In[17]:
# Set the executable path and initialize Splinter
executable_path = {'executable_path': ChromeDriverManager().install()}
browser = Browser('chrome', **executable_path)
# ### Visit the NASA Mars News Site
# In[18]:
# Visit the mars nasa news site
url = 'https://data-class-mars.s3.amazonaws.com/Mars/index.html'
browser.visit(url)
# Optional delay for loading the page
browser.is_element_present_by_css('div.list_text', wait_time=1)
# In[19]:
# Convert the browser html to a soup object and then quit the browser
html = browser.html
news_soup = soup(html, 'html.parser')
slide_elem = news_soup.select_one('div.list_text')
# In[20]:
slide_elem.find('div', class_='content_title')
# In[21]:
# Use the parent element to find the first a tag and save it as `news_title`
news_title = slide_elem.find('div', class_='content_title').get_text()
news_title
# In[22]:
# Use the parent element to find the paragraph text
news_p = slide_elem.find('div', class_='article_teaser_body').get_text()
news_p
# ### JPL Space Images Featured Image
# In[23]:
# Visit URL
url = 'https://data-class-jpl-space.s3.amazonaws.com/JPL_Space/index.html'
browser.visit(url)
# In[24]:
# Find and click the full image button
full_image_elem = browser.find_by_tag('button')[1]
full_image_elem.click()
# In[25]:
# Parse the resulting html with soup
html = browser.html
img_soup = soup(html, 'html.parser')
img_soup
# In[26]:
# find the relative image url
img_url_rel = img_soup.find('img', class_='fancybox-image').get('src')
img_url_rel
# In[27]:
# Use the base url to create an absolute url
img_url = f'https://data-class-jpl-space.s3.amazonaws.com/JPL_Space/{img_url_rel}'
img_url
# ### Mars Facts
# In[28]:
df = pd.read_html('https://data-class-mars-facts.s3.amazonaws.com/Mars_Facts/index.html')[0]
df.head()
# In[29]:
df.columns=['Description', 'Mars', 'Earth']
df.set_index('Description', inplace=True)
df
# In[30]:
df.to_html()
# # D1: Scrape High-Resolution Mars’ Hemisphere Images and Titles
# ### Hemispheres
# In[31]:
# 1. Use browser to visit the URL
url = 'https://data-class-mars-hemispheres.s3.amazonaws.com/Mars_Hemispheres/index.html'
browser.visit(url)
# In[32]:
# Parse HTML with soup
html_hemispheres = browser.html
hemisphere_soup = soup(html_hemispheres, 'html.parser')
# Scrape items that contain mars hemisphere info
hemispheres = hemisphere_soup.find_all('div', class_='item')
# 2. Create a list to hold the images and titles.
hemisphere_image_urls = []
# 3. Write code to retrieve the image urls and titles for each hemisphere.
# Store main URL
hemispheres_url = 'https://data-class-mars-hemispheres.s3.amazonaws.com/Mars_Hemispheres/'
# Loop through list of all hemisphere info
for x in hemispheres:
# Store title
title = x.find('h3').text
# Store link that takes you to full image jpg
ending_img_url = x.find('a', class_='itemLink product-item')['href']
# Visit website link for full image
browser.visit(hemispheres_url + ending_img_url)
# Parse HTML with soup
img_html = browser.html
img_soup = soup(img_html, 'html.parser')
# Create full image URL
img_url = hemispheres_url + img_soup.find('img', class_='wide-image')['src']
# Append retrieved info to a list of dictionaries
hemisphere_image_urls.append({'img_url' : img_url, 'title' : title})
# In[33]:
# 4. Print the list that holds the dictionary of each image url and title.
hemisphere_image_urls
# In[34]:
# 5. Quit the browser
browser.quit()
# In[ ]: