Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
18 changes: 9 additions & 9 deletions comfy/ldm/lumina/model.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,7 +8,7 @@
import torch.nn.functional as F
import comfy.ldm.common_dit

from comfy.ldm.modules.diffusionmodules.mmdit import TimestepEmbedder, RMSNorm
from comfy.ldm.modules.diffusionmodules.mmdit import TimestepEmbedder
from comfy.ldm.modules.attention import optimized_attention_masked
from comfy.ldm.flux.layers import EmbedND

Expand Down Expand Up @@ -64,8 +64,8 @@ def __init__(
)

if qk_norm:
self.q_norm = RMSNorm(self.head_dim, elementwise_affine=True, **operation_settings)
self.k_norm = RMSNorm(self.head_dim, elementwise_affine=True, **operation_settings)
self.q_norm = operation_settings.get("operations").RMSNorm(self.head_dim, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
self.k_norm = operation_settings.get("operations").RMSNorm(self.head_dim, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
else:
self.q_norm = self.k_norm = nn.Identity()

Expand Down Expand Up @@ -242,11 +242,11 @@ def __init__(
operation_settings=operation_settings,
)
self.layer_id = layer_id
self.attention_norm1 = RMSNorm(dim, eps=norm_eps, elementwise_affine=True, **operation_settings)
self.ffn_norm1 = RMSNorm(dim, eps=norm_eps, elementwise_affine=True, **operation_settings)
self.attention_norm1 = operation_settings.get("operations").RMSNorm(dim, eps=norm_eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
self.ffn_norm1 = operation_settings.get("operations").RMSNorm(dim, eps=norm_eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))

self.attention_norm2 = RMSNorm(dim, eps=norm_eps, elementwise_affine=True, **operation_settings)
self.ffn_norm2 = RMSNorm(dim, eps=norm_eps, elementwise_affine=True, **operation_settings)
self.attention_norm2 = operation_settings.get("operations").RMSNorm(dim, eps=norm_eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
self.ffn_norm2 = operation_settings.get("operations").RMSNorm(dim, eps=norm_eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))

self.modulation = modulation
if modulation:
Expand Down Expand Up @@ -431,7 +431,7 @@ def __init__(

self.t_embedder = TimestepEmbedder(min(dim, 1024), **operation_settings)
self.cap_embedder = nn.Sequential(
RMSNorm(cap_feat_dim, eps=norm_eps, elementwise_affine=True, **operation_settings),
operation_settings.get("operations").RMSNorm(cap_feat_dim, eps=norm_eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")),
operation_settings.get("operations").Linear(
cap_feat_dim,
dim,
Expand All @@ -457,7 +457,7 @@ def __init__(
for layer_id in range(n_layers)
]
)
self.norm_final = RMSNorm(dim, eps=norm_eps, elementwise_affine=True, **operation_settings)
self.norm_final = operation_settings.get("operations").RMSNorm(dim, eps=norm_eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
self.final_layer = FinalLayer(dim, patch_size, self.out_channels, operation_settings=operation_settings)

assert (dim // n_heads) == sum(axes_dims)
Expand Down
Loading