diff --git a/comfy/text_encoders/lt.py b/comfy/text_encoders/lt.py index 776e25e975c2..c33c77db7ff4 100644 --- a/comfy/text_encoders/lt.py +++ b/comfy/text_encoders/lt.py @@ -118,8 +118,9 @@ def load_sd(self, sd): sdo = comfy.utils.state_dict_prefix_replace(sd, {"text_embedding_projection.aggregate_embed.weight": "text_embedding_projection.weight", "model.diffusion_model.video_embeddings_connector.": "video_embeddings_connector.", "model.diffusion_model.audio_embeddings_connector.": "audio_embeddings_connector."}, filter_keys=True) if len(sdo) == 0: sdo = sd - - return self.load_state_dict(sdo, strict=False) + missing, unexpected = self.load_state_dict(sdo, strict=False) + missing = [k for k in missing if not k.startswith("gemma3_12b.")] # filter out keys that belong to the main gemma model + return (missing, unexpected) def memory_estimation_function(self, token_weight_pairs, device=None): constant = 6.0 diff --git a/comfy/utils.py b/comfy/utils.py index fac13f1284ea..2e33a42587ee 100644 --- a/comfy/utils.py +++ b/comfy/utils.py @@ -929,7 +929,9 @@ def generate_bilinear_data(length_old, length_new, device): return result.to(orig_dtype) def lanczos(samples, width, height): - images = [Image.fromarray(np.clip(255. * image.movedim(0, -1).cpu().numpy(), 0, 255).astype(np.uint8)) for image in samples] + #the below API is strict and expects grayscale to be squeezed + samples = samples.squeeze(1) if samples.shape[1] == 1 else samples.movedim(1, -1) + images = [Image.fromarray(np.clip(255. * image.cpu().numpy(), 0, 255).astype(np.uint8)) for image in samples] images = [image.resize((width, height), resample=Image.Resampling.LANCZOS) for image in images] images = [torch.from_numpy(np.array(image).astype(np.float32) / 255.0).movedim(-1, 0) for image in images] result = torch.stack(images)