|
| 1 | +/* Count the number of subset with a given difference - Top Down Approach*/ |
| 2 | + |
| 3 | +/*Let sum of subset 1 be s1 and subset 2 with s2 |
| 4 | +s1 - s2 = diff (given) |
| 5 | +s1 + s2=sum of array (logical) |
| 6 | +Therefore adding both eq we get : |
| 7 | +2s1= diff + sum of array |
| 8 | +s1= (diff + sum of array)/2; |
| 9 | +Problem reduces to find no of subsets with given sum*/ |
| 10 | + |
| 11 | +#include <bits/stdc++.h> |
| 12 | +using namespace std; |
| 13 | +#define int long long int |
| 14 | +#define fast \ |
| 15 | + cin.sync_with_stdio(false); \ |
| 16 | + cin.tie(NULL); \ |
| 17 | + cout.tie(NULL); |
| 18 | + |
| 19 | +int dp[1001][10001]; |
| 20 | +int CountOfSubsetSumGivenDiff(int n, int arr[], int sum) |
| 21 | +{ |
| 22 | + for (int i = 0; i <= n; i++) |
| 23 | + dp[i][0] = 1; |
| 24 | + for (int i = 1; i <= sum; i++) |
| 25 | + dp[0][i] = 0; |
| 26 | + for (int i = 1; i <= n; i++) |
| 27 | + { |
| 28 | + for (int j = 1; j <= sum; j++) |
| 29 | + { |
| 30 | + if (arr[i - 1] <= j) |
| 31 | + dp[i][j] = dp[i - 1][j - arr[i - 1]] + dp[i - 1][j]; |
| 32 | + else |
| 33 | + dp[i][j] = dp[i - 1][j]; |
| 34 | + } |
| 35 | + } |
| 36 | + return dp[n][sum]; |
| 37 | +} |
| 38 | +signed main() |
| 39 | +{ |
| 40 | + fast; |
| 41 | + int n = 4; |
| 42 | + int arr[4] = {1, 2, 3, 3}; |
| 43 | + int diff = 1; |
| 44 | + int sum = accumulate(arr, arr + n, 0); |
| 45 | + int s1 = (diff + sum) / 2; |
| 46 | + //memonization |
| 47 | + memset(dp, -1, sizeof(dp)); |
| 48 | + |
| 49 | + cout << CountOfSubsetSumGivenDiff(n, arr, s1); |
| 50 | + |
| 51 | + return 0; |
| 52 | +} |
0 commit comments