|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": {}, |
| 6 | + "source": [ |
| 7 | + "# Importing Dependencies" |
| 8 | + ] |
| 9 | + }, |
| 10 | + { |
| 11 | + "cell_type": "code", |
| 12 | + "execution_count": 1, |
| 13 | + "metadata": {}, |
| 14 | + "outputs": [], |
| 15 | + "source": [ |
| 16 | + "from datetime import date, datetime\n", |
| 17 | + "import requests\n", |
| 18 | + "import pandas as pd\n", |
| 19 | + "import os\n", |
| 20 | + "import json\n", |
| 21 | + "import re\n", |
| 22 | + "import requests\n", |
| 23 | + "import sqlalchemy\n", |
| 24 | + "from sqlalchemy.orm import sessionmaker\n", |
| 25 | + "import sqlite3" |
| 26 | + ] |
| 27 | + }, |
| 28 | + { |
| 29 | + "cell_type": "markdown", |
| 30 | + "metadata": {}, |
| 31 | + "source": [ |
| 32 | + "# Extract" |
| 33 | + ] |
| 34 | + }, |
| 35 | + { |
| 36 | + "cell_type": "code", |
| 37 | + "execution_count": 2, |
| 38 | + "metadata": {}, |
| 39 | + "outputs": [], |
| 40 | + "source": [ |
| 41 | + "# Extracting JSON data from public API of New York City website\n", |
| 42 | + "def _extract():\n", |
| 43 | + " url = \"https://data.cityofnewyork.us/resource/rc75-m7u3.json\"\n", |
| 44 | + " result_load = requests.get(url)\n", |
| 45 | + " df = pd.DataFrame(json.loads(result_load.content))\n", |
| 46 | + " df.to_csv(\"covid_db_original_{}.csv\".format(date.today().strftime(\"%Y%m%d\")))\n", |
| 47 | + "_extract()" |
| 48 | + ] |
| 49 | + }, |
| 50 | + { |
| 51 | + "cell_type": "markdown", |
| 52 | + "metadata": {}, |
| 53 | + "source": [ |
| 54 | + "# Transform" |
| 55 | + ] |
| 56 | + }, |
| 57 | + { |
| 58 | + "cell_type": "code", |
| 59 | + "execution_count": 3, |
| 60 | + "metadata": {}, |
| 61 | + "outputs": [], |
| 62 | + "source": [ |
| 63 | + "# df = pd.DataFrame(json.loads(result_load.content))\n", |
| 64 | + "def _transform():\n", |
| 65 | + " df1 = pd.read_csv(\"covid_db_original_{}.csv\".format(date.today().strftime(\"%Y%m%d\")))\n", |
| 66 | + " df1['date'] = df1['date_of_interest'].str.extract('(....-..-..)', expand=True)\n", |
| 67 | + " df1.drop(df1.columns.difference(['date','case_count','hospitalized_count','death_count']), axis=1, inplace=True)\n", |
| 68 | + " df1 = df1.set_index(\"date\")\n", |
| 69 | + " df1.to_csv(\"covid_db_transformed_{}.csv\".format(date.today().strftime(\"%Y%m%d\")))\n", |
| 70 | + "_transform()" |
| 71 | + ] |
| 72 | + }, |
| 73 | + { |
| 74 | + "cell_type": "markdown", |
| 75 | + "metadata": {}, |
| 76 | + "source": [ |
| 77 | + "# Load" |
| 78 | + ] |
| 79 | + }, |
| 80 | + { |
| 81 | + "cell_type": "code", |
| 82 | + "execution_count": 6, |
| 83 | + "metadata": {}, |
| 84 | + "outputs": [ |
| 85 | + { |
| 86 | + "name": "stdout", |
| 87 | + "output_type": "stream", |
| 88 | + "text": [ |
| 89 | + "Opened database successfully\n", |
| 90 | + "Data already exists in the database\n", |
| 91 | + "Close database successfully\n" |
| 92 | + ] |
| 93 | + } |
| 94 | + ], |
| 95 | + "source": [ |
| 96 | + "def _load():\n", |
| 97 | + " \n", |
| 98 | + " df2 = pd.read_csv(\"covid_db_transformed_{}.csv\".format(date.today().strftime(\"%Y%m%d\")))\n", |
| 99 | + " \n", |
| 100 | + " DATABASE_LOCATION = \"sqlite:///covid_db_cleaned.sqlite\"\n", |
| 101 | + "\n", |
| 102 | + " engine = sqlalchemy.create_engine(DATABASE_LOCATION)\n", |
| 103 | + " conn = sqlite3.connect('covid_db_cleaned.sqlite')\n", |
| 104 | + " cursor = conn.cursor()\n", |
| 105 | + "\n", |
| 106 | + " sql_query = \"\"\"\n", |
| 107 | + " CREATE TABLE IF NOT EXISTS covid_db_cleaned (\n", |
| 108 | + " date DATE,\n", |
| 109 | + " case_count INT,\n", |
| 110 | + " hospitalized_count INT,\n", |
| 111 | + " death_count INT,\n", |
| 112 | + " PRIMARY KEY (date)\n", |
| 113 | + " )\n", |
| 114 | + " \"\"\"\n", |
| 115 | + "\n", |
| 116 | + " cursor.execute(sql_query)\n", |
| 117 | + " print(\"Opened database successfully\")\n", |
| 118 | + "\n", |
| 119 | + " try:\n", |
| 120 | + " df2.to_sql(\"covid_db_cleaned\", engine, index=False, if_exists='append',con=conn)\n", |
| 121 | + " except:\n", |
| 122 | + " print(\"Data already exists in the database\")\n", |
| 123 | + "\n", |
| 124 | + " conn.close()\n", |
| 125 | + " print(\"Close database successfully\")\n", |
| 126 | + "_load()" |
| 127 | + ] |
| 128 | + }, |
| 129 | + { |
| 130 | + "cell_type": "code", |
| 131 | + "execution_count": null, |
| 132 | + "metadata": {}, |
| 133 | + "outputs": [], |
| 134 | + "source": [] |
| 135 | + } |
| 136 | + ], |
| 137 | + "metadata": { |
| 138 | + "kernelspec": { |
| 139 | + "display_name": "Python 3", |
| 140 | + "language": "python", |
| 141 | + "name": "python3" |
| 142 | + }, |
| 143 | + "language_info": { |
| 144 | + "codemirror_mode": { |
| 145 | + "name": "ipython", |
| 146 | + "version": 3 |
| 147 | + }, |
| 148 | + "file_extension": ".py", |
| 149 | + "mimetype": "text/x-python", |
| 150 | + "name": "python", |
| 151 | + "nbconvert_exporter": "python", |
| 152 | + "pygments_lexer": "ipython3", |
| 153 | + "version": "3.8.5" |
| 154 | + } |
| 155 | + }, |
| 156 | + "nbformat": 4, |
| 157 | + "nbformat_minor": 4 |
| 158 | +} |
0 commit comments