|
| 1 | +''' |
| 2 | +Code to find the strongly connected components of a graph using Kosaraju's Algorithm |
| 3 | +Time complexity: O(V + E) |
| 4 | +''' |
| 5 | + |
| 6 | +from collections import defaultdict |
| 7 | + |
| 8 | +class Graph: |
| 9 | + |
| 10 | + #Constructor that basically initiallises every new vertex in dict as an |
| 11 | + #empty list |
| 12 | + def __init__(self): |
| 13 | + self.graph = defaultdict(list) |
| 14 | + self.transpose = defaultdict(list) |
| 15 | + self.vertexList = [] |
| 16 | + |
| 17 | + def addEdgeDirected(self, u, v, w = 1): |
| 18 | + self.graph[u].append([v, w]) |
| 19 | + self.transpose[v].append([u, w]) |
| 20 | + if u not in self.vertexList: |
| 21 | + self.vertexList.append(u) |
| 22 | + if v not in self.vertexList: |
| 23 | + self.vertexList.append(v) |
| 24 | + |
| 25 | + def addEdgeUndirected(self, u, v, w = 1): |
| 26 | + self.graph[u].append([v, w]) |
| 27 | + self.graph[v].append([u, w]) |
| 28 | + if u not in self.vertexList: |
| 29 | + self.vertexList.append(u) |
| 30 | + if v not in self.vertexList: |
| 31 | + self.vertexList.append(v) |
| 32 | + |
| 33 | + #s here is the source node |
| 34 | + def BFS(self, s): |
| 35 | + color = ['w']*len(self.graph) |
| 36 | + #Queue that will store the nodes in BFS |
| 37 | + queue = [] |
| 38 | + queue.append(s) |
| 39 | + color[s] = 'g' |
| 40 | + while(queue): |
| 41 | + s = queue.pop(0) #dequeue operation |
| 42 | + color[s] = 'b' |
| 43 | + print s, |
| 44 | + for i in self.graph[s]: |
| 45 | + if (color[i] == 'w'): |
| 46 | + queue.append(i) |
| 47 | + color[i] = 'g' |
| 48 | + |
| 49 | + def DFS(self, s, time = 0, startTime = {}, endTime = {}, visited = defaultdict(bool), DFSList = []): |
| 50 | + startTime[s] = time |
| 51 | + visited[s] = True |
| 52 | + DFSList.append(s) |
| 53 | + for i in self.graph[s]: |
| 54 | + if(visited[i[0]] == False): |
| 55 | + time += 1 |
| 56 | + self.DFS(i[0], time, startTime, endTime, visited, DFSList) |
| 57 | + endTime[i[0]] = time |
| 58 | + return DFSList |
| 59 | + |
| 60 | + |
| 61 | + def TopologicalSortUtil(self, v, visited, stack): |
| 62 | + visited[v] = True |
| 63 | + print visited |
| 64 | + for i in self.graph[v]: |
| 65 | + if (visited[i[0]] == False): |
| 66 | + self.TopologicalSortUtil(i[0], visited, stack) |
| 67 | + |
| 68 | + stack.insert(0, v) #adding to bottom of stack same as adding to top then printing in reverse |
| 69 | + |
| 70 | + |
| 71 | + def TopologicalSort(self): |
| 72 | + #self.vertexList.sort() |
| 73 | + visited = defaultdict(bool) |
| 74 | + stack = [] |
| 75 | + |
| 76 | + for i in self.vertexList: |
| 77 | + if (visited[i] == False): |
| 78 | + self.TopologicalSortUtil(i, visited, stack) |
| 79 | + |
| 80 | + print "The Graph vertices after topological sort are:" |
| 81 | + print stack |
| 82 | + |
| 83 | + def DFSUtil(self, s, visited): |
| 84 | + visited[s] = True |
| 85 | + print s, |
| 86 | + for i in self.transpose[s]: |
| 87 | + if (visited[i[0]] == False): |
| 88 | + self.DFSUtil(i[0], visited) |
| 89 | + |
| 90 | + def FillOrder(self, s, visited, stack): |
| 91 | + visited[s] = True |
| 92 | + for i in self.graph[s]: |
| 93 | + if (visited[i[0]] == False): |
| 94 | + self.FillOrder(i[0], visited, stack) |
| 95 | + |
| 96 | + stack.append(s) |
| 97 | + |
| 98 | + def Kosarajus(self): |
| 99 | + #Step1: Create the stack |
| 100 | + stack = [] |
| 101 | + visited = defaultdict(bool) |
| 102 | + for i in self.vertexList: |
| 103 | + if (visited[i] == False): |
| 104 | + self.FillOrder(i, visited, stack) |
| 105 | + |
| 106 | + #Step2: Empty the stack, and print the SCC's |
| 107 | + |
| 108 | + visited = defaultdict(bool) |
| 109 | + while (stack): |
| 110 | + i = stack.pop() |
| 111 | + if (visited[i] == False): |
| 112 | + self.DFSUtil(i, visited) |
| 113 | + print "" |
| 114 | + |
| 115 | +#Testing on graph |
| 116 | + |
| 117 | +g = Graph() |
| 118 | +g.addEdgeDirected(0, 3) |
| 119 | +g.addEdgeDirected(3, 2) |
| 120 | +g.addEdgeDirected(2, 1) |
| 121 | +g.addEdgeDirected(1, 0) |
| 122 | +g.addEdgeDirected(4, 2) |
| 123 | +g.addEdgeDirected(5, 4) |
| 124 | + |
| 125 | +print "Following are strongly connected components in given graph" |
| 126 | + |
| 127 | +g.Kosarajus() |
| 128 | + |
| 129 | + |
| 130 | + |
0 commit comments