|
| 1 | +// C++ program for Dijkstra's single source shortest path |
| 2 | +// algorithm. The program is for adjacency matrix |
| 3 | +// representation of the graph |
| 4 | +/* |
| 5 | + Description |
| 6 | + |
| 7 | + //Like Prim’s MST, generate a SPT (shortest path tree) with a given source as a root. |
| 8 | + //Maintain two sets, one set contains vertices included in the shortest-path tree, other set includes vertices not yet included in the shortest-path tree. |
| 9 | + //At every step of the algorithm, find a vertex that is in the other set (set not yet included) and has a minimum distance from the source. |
| 10 | +*/ |
| 11 | +#include <iostream> |
| 12 | +using namespace std; |
| 13 | +#include <limits.h> |
| 14 | + |
| 15 | +// Number of vertices in the graph |
| 16 | +#define V 9 |
| 17 | + |
| 18 | +// A utility function to find the vertex with minimum |
| 19 | +// distance value, from the set of vertices not yet included |
| 20 | +// in shortest path tree |
| 21 | +int minDistance(int dist[], bool sptSet[]) |
| 22 | +{ |
| 23 | + |
| 24 | + // Initialize min value |
| 25 | + int min = INT_MAX, min_index; |
| 26 | + |
| 27 | + for (int v = 0; v < V; v++) |
| 28 | + if (sptSet[v] == false && dist[v] <= min) |
| 29 | + min = dist[v], min_index = v; |
| 30 | + |
| 31 | + return min_index; |
| 32 | +} |
| 33 | + |
| 34 | +// A utility function to print the constructed distance |
| 35 | +// array |
| 36 | +void printSolution(int dist[]) |
| 37 | +{ |
| 38 | + cout << "Vertex \t Distance from Source" << endl; |
| 39 | + for (int i = 0; i < V; i++) |
| 40 | + cout << i << " \t\t\t\t" << dist[i] << endl; |
| 41 | +} |
| 42 | + |
| 43 | +// Function that implements Dijkstra's single source |
| 44 | +// shortest path algorithm for a graph represented using |
| 45 | +// adjacency matrix representation |
| 46 | +void dijkstra(int graph[V][V], int src) |
| 47 | +{ |
| 48 | + int dist[V]; // The output array. dist[i] will hold the |
| 49 | + // shortest |
| 50 | + // distance from src to i |
| 51 | + |
| 52 | + bool sptSet[V]; // sptSet[i] will be true if vertex i is |
| 53 | + // included in shortest |
| 54 | + // path tree or shortest distance from src to i is |
| 55 | + // finalized |
| 56 | + |
| 57 | + // Initialize all distances as INFINITE and stpSet[] as |
| 58 | + // false |
| 59 | + for (int i = 0; i < V; i++) |
| 60 | + dist[i] = INT_MAX, sptSet[i] = false; |
| 61 | + |
| 62 | + // Distance of source vertex from itself is always 0 |
| 63 | + dist[src] = 0; |
| 64 | + |
| 65 | + // Find shortest path for all vertices |
| 66 | + for (int count = 0; count < V - 1; count++) { |
| 67 | + // Pick the minimum distance vertex from the set of |
| 68 | + // vertices not yet processed. u is always equal to |
| 69 | + // src in the first iteration. |
| 70 | + int u = minDistance(dist, sptSet); |
| 71 | + |
| 72 | + // Mark the picked vertex as processed |
| 73 | + sptSet[u] = true; |
| 74 | + |
| 75 | + // Update dist value of the adjacent vertices of the |
| 76 | + // picked vertex. |
| 77 | + for (int v = 0; v < V; v++) |
| 78 | + |
| 79 | + // Update dist[v] only if is not in sptSet, |
| 80 | + // there is an edge from u to v, and total |
| 81 | + // weight of path from src to v through u is |
| 82 | + // smaller than current value of dist[v] |
| 83 | + if (!sptSet[v] && graph[u][v] |
| 84 | + && dist[u] != INT_MAX |
| 85 | + && dist[u] + graph[u][v] < dist[v]) |
| 86 | + dist[v] = dist[u] + graph[u][v]; |
| 87 | + } |
| 88 | + |
| 89 | + // print the constructed distance array |
| 90 | + printSolution(dist); |
| 91 | +} |
| 92 | + |
| 93 | +// driver's code |
| 94 | +int main() |
| 95 | +{ |
| 96 | + |
| 97 | + /* Let us create the example graph discussed above */ |
| 98 | + int graph[V][V] = { { 0, 4, 0, 0, 0, 0, 0, 8, 0 }, |
| 99 | + { 4, 0, 8, 0, 0, 0, 0, 11, 0 }, |
| 100 | + { 0, 8, 0, 7, 0, 4, 0, 0, 2 }, |
| 101 | + { 0, 0, 7, 0, 9, 14, 0, 0, 0 }, |
| 102 | + { 0, 0, 0, 9, 0, 10, 0, 0, 0 }, |
| 103 | + { 0, 0, 4, 14, 10, 0, 2, 0, 0 }, |
| 104 | + { 0, 0, 0, 0, 0, 2, 0, 1, 6 }, |
| 105 | + { 8, 11, 0, 0, 0, 0, 1, 0, 7 }, |
| 106 | + { 0, 0, 2, 0, 0, 0, 6, 7, 0 } }; |
| 107 | + |
| 108 | + // Function call |
| 109 | + dijkstra(graph, 0); |
| 110 | + |
| 111 | + return 0; |
| 112 | +} |
| 113 | + |
| 114 | +//Time Complexity: O(V2) |
| 115 | +//Auxiliary Space: O(V) |
0 commit comments