-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathtraining.py
146 lines (115 loc) · 5.88 KB
/
training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
'''Implements a generic training loop.
'''
import torch
import utils
from torch.utils.tensorboard import SummaryWriter
from tqdm.autonotebook import tqdm
import time
import numpy as np
import os
import shutil
def train(model, train_dataloader, epochs, lr, steps_til_summary, epochs_til_checkpoint, model_dir,
loss_fn, pruning_fn, summary_fn, double_precision=False, clip_grad=False,
loss_schedules=None, resume_checkpoint={}, objs_to_save={}, epochs_til_pruning=4):
optim = torch.optim.Adam(lr=lr, params=model.parameters())
# load optimizer if supplied
if 'optimizer_state_dict' in resume_checkpoint:
optim.load_state_dict(resume_checkpoint['optimizer_state_dict'])
for g in optim.param_groups:
g['lr'] = lr
if os.path.exists(os.path.join(model_dir, 'summaries')):
val = input("The model directory %s exists. Overwrite? (y/n)" % model_dir)
if val == 'y':
if os.path.exists(os.path.join(model_dir, 'summaries')):
shutil.rmtree(os.path.join(model_dir, 'summaries'))
if os.path.exists(os.path.join(model_dir, 'checkpoints')):
shutil.rmtree(os.path.join(model_dir, 'checkpoints'))
os.makedirs(model_dir, exist_ok=True)
summaries_dir = os.path.join(model_dir, 'summaries')
utils.cond_mkdir(summaries_dir)
checkpoints_dir = os.path.join(model_dir, 'checkpoints')
utils.cond_mkdir(checkpoints_dir)
writer = SummaryWriter(summaries_dir)
total_steps = 0
if 'total_steps' in resume_checkpoint:
total_steps = resume_checkpoint['total_steps']
start_epoch = 0
if 'epoch' in resume_checkpoint:
start_epoch = resume_checkpoint['epoch']
with tqdm(total=len(train_dataloader) * epochs) as pbar:
pbar.update(total_steps)
train_losses = []
for epoch in range(start_epoch, epochs):
if not epoch % epochs_til_checkpoint and epoch:
torch.save(model.state_dict(),
os.path.join(checkpoints_dir, 'model_%06d.pth' % total_steps))
np.savetxt(os.path.join(checkpoints_dir, 'train_losses_%06d.txt' % total_steps),
np.array(train_losses))
save_dict = {'epoch': epoch,
'total_steps': total_steps,
'optimizer_state_dict': optim.state_dict()}
save_dict.update(objs_to_save)
torch.save(save_dict, os.path.join(checkpoints_dir, 'optim_%06d.pth' % total_steps))
# prune
if not epoch % epochs_til_pruning and epoch:
pruning_fn(model, train_dataloader.dataset)
if not (epoch + 1) % epochs_til_pruning:
retile = False
else:
retile = True
for step, (model_input, gt) in enumerate(train_dataloader):
start_time = time.time()
tmp = {}
for key, value in model_input.items():
if isinstance(value, torch.Tensor):
tmp.update({key: value.cuda()})
else:
tmp.update({key: value})
model_input = tmp
tmp = {}
for key, value in gt.items():
if isinstance(value, torch.Tensor):
tmp.update({key: value.cuda()})
else:
tmp.update({key: value})
gt = tmp
if double_precision:
model_input = {key: value.double() for key, value in model_input.items()}
gt = {key: value.double() for key, value in gt.items()}
model_output = model(model_input)
losses = loss_fn(model_output, gt, total_steps, retile=retile)
train_loss = 0.
for loss_name, loss in losses.items():
single_loss = loss.mean()
if loss_schedules is not None and loss_name in loss_schedules:
writer.add_scalar(loss_name + "_weight", loss_schedules[loss_name](total_steps), total_steps)
single_loss *= loss_schedules[loss_name](total_steps)
writer.add_scalar(loss_name, single_loss, total_steps)
train_loss += single_loss
train_losses.append(train_loss.item())
writer.add_scalar("total_train_loss", train_loss, total_steps)
optim.zero_grad()
train_loss.backward()
if clip_grad:
if isinstance(clip_grad, bool):
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.)
else:
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=clip_grad)
optim.step()
pbar.update(1)
if not total_steps % steps_til_summary:
tqdm.write("Epoch %d, Total loss %0.6f, iteration time %0.6f" % (epoch, train_loss, time.time() - start_time))
summary_fn(model, model_input, gt, model_output, writer, total_steps)
total_steps += 1
# after epoch
tqdm.write("Epoch %d, Total loss %0.6f, iteration time %0.6f" % (epoch, train_loss, time.time() - start_time))
# save model at end of epoch
torch.save(model.state_dict(),
os.path.join(checkpoints_dir, 'model_final_%06d.pth' % total_steps))
np.savetxt(os.path.join(checkpoints_dir, 'train_losses_final_%06d.txt' % total_steps),
np.array(train_losses))
save_dict = {'epoch': epoch,
'total_steps': total_steps,
'optimizer_state_dict': optim.state_dict()}
save_dict.update(objs_to_save)
torch.save(save_dict, os.path.join(checkpoints_dir, 'optim_final_%06d.pth' % total_steps))