Skip to content

8. sentiment-analysis-with-bert #6

Open
@SimplyLucKey

Description

@SimplyLucKey

Hi there,
I was following along with your video guide on this project but with my own dataset.
As I started training for my data I ran into an error.

RuntimeError : stack expects each tensor to be equal size

Our codes are basically identical and the structure of data seems to be identical as well. I'm not sure what's causing this issue or how to resolve it.

More in-depth error:

RuntimeError                              Traceback (most recent call last)
<timed exec> in <module>

<ipython-input-26-8ba1e19dd195> in train_epoch(model, data_loader, loss_fn, optimizer, device, scheduler, n_examples)
      4     correct_predictions = 0
      5 
----> 6     for i in data_loader:
      7         input_ids = i['input_ids'].to(device)
      8         attention_mask = i['attention_mask'].to(device)

~\Anaconda3\lib\site-packages\torch\utils\data\dataloader.py in __next__(self)
    361 
    362     def __next__(self):
--> 363         data = self._next_data()
    364         self._num_yielded += 1
    365         if self._dataset_kind == _DatasetKind.Iterable and \

~\Anaconda3\lib\site-packages\torch\utils\data\dataloader.py in _next_data(self)
    401     def _next_data(self):
    402         index = self._next_index()  # may raise StopIteration
--> 403         data = self._dataset_fetcher.fetch(index)  # may raise StopIteration
    404         if self._pin_memory:
    405             data = _utils.pin_memory.pin_memory(data)

~\Anaconda3\lib\site-packages\torch\utils\data\_utils\fetch.py in fetch(self, possibly_batched_index)
     45         else:
     46             data = self.dataset[possibly_batched_index]
---> 47         return self.collate_fn(data)

~\Anaconda3\lib\site-packages\torch\utils\data\_utils\collate.py in default_collate(batch)
     72         return batch
     73     elif isinstance(elem, container_abcs.Mapping):
---> 74         return {key: default_collate([d[key] for d in batch]) for key in elem}
     75     elif isinstance(elem, tuple) and hasattr(elem, '_fields'):  # namedtuple
     76         return elem_type(*(default_collate(samples) for samples in zip(*batch)))

~\Anaconda3\lib\site-packages\torch\utils\data\_utils\collate.py in <dictcomp>(.0)
     72         return batch
     73     elif isinstance(elem, container_abcs.Mapping):
---> 74         return {key: default_collate([d[key] for d in batch]) for key in elem}
     75     elif isinstance(elem, tuple) and hasattr(elem, '_fields'):  # namedtuple
     76         return elem_type(*(default_collate(samples) for samples in zip(*batch)))

~\Anaconda3\lib\site-packages\torch\utils\data\_utils\collate.py in default_collate(batch)
     53             storage = elem.storage()._new_shared(numel)
     54             out = elem.new(storage)
---> 55         return torch.stack(batch, 0, out=out)
     56     elif elem_type.__module__ == 'numpy' and elem_type.__name__ != 'str_' \
     57             and elem_type.__name__ != 'string_':

RuntimeError: stack expects each tensor to be equal size, but got [160] at entry 0 and [161] at entry 5

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions