-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
226 lines (191 loc) · 9.66 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
import argparse
import os
import numpy as np
import pytorch_lightning as pl
import torch
from pytorch_lightning.loggers import WandbLogger
from torch import nn
from torchmetrics import MetricCollection, Accuracy, AUROC
from torchmetrics import F1Score as F1
from pytorch_lightning.callbacks import ModelCheckpoint, LearningRateMonitor
from torchvision import models
import network.get_network
from dataset import get_class_names
from dataset.merge_patch_wsi_dataset import PatchWsiDataModule
from options import get_arguments, get_arguments_additional
from pl_model.mil_e2e_trainer import MilE2EModule
from utils import save_parameters, switch_dim
import kornia.augmentation as K
def get_transforms(args):
mean = args.data_mean if args.data_mean is not None else [0.485, 0.456, 0.406]
std = args.data_std if args.data_std is not None else [0.229, 0.224, 0.225]
if args.data_norm:
transforms_train = nn.Sequential(
# K.RandomResizedCrop((224, 224), scale=(0.4, 1.0), p=0.8),
# K.RandomHorizontalFlip(),
# K.ColorJitter(0.1, 0.1, 0.1, 0.1),
# K.ColorJiggle(0.1, 0.1, 0.1, 0.1),
K.Normalize(mean=torch.tensor(mean),
std=torch.tensor(std))
)
transforms_eval = nn.Sequential(
K.Normalize(mean=torch.tensor(mean),
std=torch.tensor(std))
)
else:
transforms_train = nn.Sequential(
)
transforms_eval = nn.Sequential(
)
return transforms_train, transforms_eval
def get_metric(num_classes, task):
metrics = MetricCollection({
"Accuracy": Accuracy(num_classes=num_classes, task=task),
"BA": Accuracy(num_classes=num_classes, average="macro", task=task),
"F1": F1(num_classes=num_classes, task=task),
"AUROC": AUROC(num_classes=num_classes, task=task),
})
return metrics
def get_network(args):
if args.network.startswith("dino"):
from network.get_network import get_dino_prompt_vit
backbone = get_dino_prompt_vit(args.network, args.transfer_type, pretrained=args.load_backbone_weight,
num_prompt_tokens=args.num_prompt_tokens,
prompt_drop_out=args.prompt_dropout,
project_prompt_dim=args.project_prompt_dim,
deep_prompt=args.deep_prompt)
num_fts = backbone.num_features
elif args.network.startswith("hipt"):
from network.get_network import get_hipt
backbone = get_hipt(args.network, args.transfer_type, pretrained=args.load_backbone_weight,
num_prompt_tokens=args.num_prompt_tokens,
prompt_drop_out=args.prompt_dropout,
project_prompt_dim=args.project_prompt_dim,
deep_prompt=args.deep_prompt)
num_fts = backbone.num_features
elif args.network.startswith("transpath"):
from network.get_network import get_prompt_transpath
backbone = get_prompt_transpath(args.network, args.transfer_type, pretrained=args.load_backbone_weight,
num_prompt_tokens=args.num_prompt_tokens,
prompt_drop_out=args.prompt_dropout,
project_prompt_dim=args.project_prompt_dim,
deep_prompt=args.deep_prompt)
num_fts = backbone.num_features
else:
from network.get_network import get_prompt_vit
backbone = get_prompt_vit(args.network, args.transfer_type, pretrained=args.pretrained,
num_prompt_tokens=args.num_prompt_tokens,
prompt_drop_out=args.prompt_dropout,
project_prompt_dim=args.project_prompt_dim,
deep_prompt=args.deep_prompt)
num_fts = backbone.num_features
return backbone, num_fts
def get_loss_weight(args, data_module):
if args.loss_weight is not None:
loss_weight = args.loss_weight
elif args.auto_loss_weight:
data_module.setup()
loss_weight = data_module.dataset_train.get_weights_of_class()
else:
loss_weight = None
if loss_weight is not None:
print("Using loss weight:", loss_weight)
loss_weight = torch.Tensor(loss_weight)
return loss_weight
def get_mil_network(mil_type, num_fts, num_classes, args, loss_weight=None):
if mil_type in ["dsmil", "hipt_dsmil", "dsmil_bin", "dsmil_ce"]:
from network.dsmil import FCLayer, BClassifier, MILNet
i_classifier = FCLayer(in_size=num_fts, out_size=num_classes)
b_classifier = BClassifier(input_size=num_fts, output_class=num_classes, dropout_v=args.dropout_att)
classifier_model = MILNet(i_classifier, b_classifier)
if mil_type in ["dsmil_ce"]:
loss = nn.CrossEntropyLoss(weight=loss_weight)
else:
loss = nn.BCEWithLogitsLoss(pos_weight=loss_weight)
elif mil_type in ("clam_sb", "clam_mb"):
from network.model_clam import CLAM_SB, CLAM_MB
CLAM = CLAM_SB if mil_type == "clam_sb" else CLAM_MB
clam_model_dict = {"dropout": True, 'n_classes': num_classes, 'subtyping': True, "size": args.clam_size,
'k_sample': 8, 'bag_weight': 0.7} #[192, 128, 128],
classifier_model = CLAM(**clam_model_dict, instance_loss_fn='svm')
loss = nn.CrossEntropyLoss(weight=loss_weight)
elif mil_type in ["avgpooling", "maxpooling", "abmil", "gabmil"]:
model_name = mil_type
if model_name == "avgpooling":
pooling_layer = nn.AdaptiveAvgPool1d(1)
elif model_name == "maxpooling":
pooling_layer = nn.AdaptiveMaxPool1d(1)
elif model_name == "abmil":
from network.pooling import AttentionPooling
pooling_layer = AttentionPooling(num_fts, 128, out_dim=1, flatten=True, dropout=args.dropout_att)
elif model_name == "gabmil":
from network.pooling import GatedAttentionPooling
pooling_layer = GatedAttentionPooling(num_fts, 128, out_dim=1, flatten=True, dropout=args.dropout_att)
else:
raise NotImplementedError
classifier_model = nn.Sequential(
switch_dim(),
pooling_layer,
nn.Flatten(),
nn.Linear(num_fts, num_classes),
# nn.Linear(512, 128),
# nn.ReLU(inplace=True),
# nn.Linear(128, num_classes)
)
loss = nn.CrossEntropyLoss(weight=loss_weight)
else:
raise NotImplementedError
return classifier_model, loss
def get_model(args, backbone, num_fts, num_classes, loss_weight=None):
from pl_model.forward_fn import model_to_classifier_type
task = "multiclass"
classifier_model, loss = get_mil_network(args.model, num_fts, num_classes, args, loss_weight=loss_weight)
classifier_type = model_to_classifier_type[args.model]
if args.model in ["hipt_hipt", "hipt_dsmil"]:
trainer_model = HiptModule(backbone, classifier_model, loss, get_metric(num_classes, task),
get_transforms(args), args, num_classes=num_classes,
classifier_type=classifier_type)
else:
trainer_model = MilE2EModule(backbone, classifier_model, loss, get_metric(num_classes, task),
get_transforms(args), args, num_classes=num_classes,
classifier_type=classifier_type)
return trainer_model
def main(args):
classes_names = get_class_names(args.dataset_name)
data_module = PatchWsiDataModule(args.dataset_root, args.dataset_csv, classes_names=classes_names,
val_fold=args.val_fold, num_workers=args.num_workers, drop_out=args.dropout_inst)
num_classes = len(classes_names[0])
lr_monitor = LearningRateMonitor(logging_interval='epoch')
backbone, num_fts = get_network(args)
loss_weight = get_loss_weight(args, data_module)
trainer_model = get_model(args, backbone, num_fts, num_classes, loss_weight)
logger = WandbLogger(project=args.run_name, name=args.tag, log_model=False)
trainer = pl.Trainer(default_root_dir=os.path.join(args.output_dir, args.run_name),
max_epochs=args.epochs, log_every_n_steps=50, num_sanity_val_steps=0,
precision=args.precision,
accelerator="gpu", devices=args.gpu_id,
logger=logger,
callbacks=[lr_monitor],
strategy='ddp' if len(args.gpu_id) > 1 else "auto",
)
trainer.fit(trainer_model, data_module)
if len(args.gpu_id) > 1:
torch.distributed.destroy_process_group()
if trainer.is_global_zero:
trainer = pl.Trainer(default_root_dir=os.path.join(args.output_dir, args.run_name),
num_sanity_val_steps=0, logger=logger,
accelerator="gpu", devices=[args.gpu_id[0]], )
trainer.test(trainer_model, data_module)
else:
trainer.test(trainer_model, data_module)
def add_argument_fun(parser):
parser.add_argument("--clam-size", type=lambda s: [int(item) for item in s.split(',')], default=[192, 128, 128],
help="Choose the number of samples")
return parser
def process_argument_fun(opts):
return opts
if __name__ == '__main__':
parser = argparse.ArgumentParser()
args = get_arguments_additional(parser, add_argument_fun, process_argument_fun)
save_parameters(args)
main(args)