-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmain.py
178 lines (150 loc) · 7.56 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import argparse
import os
import pytorch_lightning as pl
import torch
from pytorch_lightning.loggers import WandbLogger
from torch import nn
from torchmetrics import MetricCollection, Accuracy, AUROC
from pytorch_lightning.callbacks import ModelCheckpoint, LearningRateMonitor
import albumentations as A
from albumentations.pytorch import ToTensorV2
from network.auxiliary_classifier import AuxClassifier
from network.base_classifier import ClassifierLossModuleList
from network.infopro_decoder import RandomInfoProDecoder
from network.pooling import GatedAttentionPooling
from network.resnet import Resnet34LocalBatchNorm
from options import get_arguments
from csv_dataset import CsvDataModule
from trainer import LocalModule
from utils import save_parameters, RandomCropEdge
def get_A_transforms():
# we normlize wsis according to the mean and std of each dataset, filtering backgrounds.
# The fallback values here are the mean and std of the entire TCGA dataset.
mean = args.data_mean if args.data_mean else [0.7223, 0.5304, 0.6579]
std = args.data_std if args.data_std else [0.2057, 0.2471, 0.2010]
transform_train_fn = A.Compose([
# For smaller WSI, we set a conservative scale, otherwise, it may result in too small images
RandomCropEdge(scale=(0.5, 1.0), scale_for_small=(0.9, 1.0), small_length=3000, p=0.6),
A.Flip(p=0.75),
A.RandomRotate90(),
A.ColorJitter(0.1, 0.1, 0.1, 0.1),
A.Normalize(mean=mean, std=std),
ToTensorV2(),
])
transform_test_fn = A.Compose([
A.Normalize(mean=mean, std=std),
ToTensorV2(),
])
transform_train = lambda x: transform_train_fn(image=x)["image"]
transform_test = lambda x: transform_test_fn(image=x)["image"]
return transform_train, transform_test
def get_metric(num_classes):
metric_train = MetricCollection({
"Accuracy": Accuracy(num_classes=num_classes),
"BA": Accuracy(num_classes=num_classes, average="macro"),
# "F1": F1(num_classes=num_classes),
"AUROC": AUROC(num_classes=num_classes),
}, postfix='/train')
metric_eval = MetricCollection({
"Accuracy": Accuracy(num_classes=num_classes),
"BA": Accuracy(num_classes=num_classes, average="macro"),
# "F1": F1(num_classes=num_classes),
"AUROC": AUROC(num_classes=num_classes),
}, postfix='/validation')
metric_test = MetricCollection({
"Accuracy": Accuracy(num_classes=num_classes),
"BA": Accuracy(num_classes=num_classes, average="macro"),
# "F1": F1(num_classes=num_classes),
"AUROC": AUROC(num_classes=num_classes),
}, prefix='test/')
return metric_train, metric_eval, metric_test
def get_loss_cfg_8():
clsloss_cfg_8 = {
1: {"in_plane": 64, "mid_plane": 64, "out_plane": 64, # feature dims
"patch_sz": 128, "n_patch": 10, "upscale": 1, # sampling parameters
"kernel_size": 9, "stride": 9, "padding": 0}, # parameters in the additional cnn layer
# 2:{...} and 3:{...} are the same as 1:{...}
4: {"in_plane": 64, "mid_plane": 128, "out_plane": 128, "patch_sz": 64, "n_patch": 10, "upscale": 2,
"kernel_size": 9, "stride": 9, "padding": 0},
5: {"in_plane": 128, "mid_plane": 128, "out_plane": 128, "patch_sz": 64, "n_patch": 10, "upscale": 1,
"kernel_size": 9, "stride": 9, "padding": 0},
6: {"in_plane": 128, "mid_plane": 256, "out_plane": 256, "patch_sz": 32, "n_patch": 10, "upscale": 2,
"kernel_size": 7, "stride": 7, "padding": 0},
7: {"in_plane": 256, "mid_plane": 256, "out_plane": 256, "patch_sz": 32, "n_patch": 10, "upscale": 1,
"kernel_size": 7, "stride": 7, "padding": 0},
}
clsloss_cfg_8[2] = clsloss_cfg_8[1]
clsloss_cfg_8[3] = clsloss_cfg_8[1]
return clsloss_cfg_8
def get_loss_cfg_4():
clsloss_cfg_4 = {
1: {"in_plane": 64, "mid_plane": 64, "out_plane": 64, "patch_sz": 128, "n_patch": 10, "upscale": 1,
"kernel_size": 9, "stride": 9, "padding": 0},
2: {"in_plane": 64, "mid_plane": 128, "out_plane": 128, "patch_sz": 64, "n_patch": 10, "upscale": 2,
"kernel_size": 9, "stride": 9, "padding": 0},
3: {"in_plane": 128, "mid_plane": 256, "out_plane": 256, "patch_sz": 32, "n_patch": 10, "upscale": 2,
"kernel_size": 7, "stride": 7, "padding": 0},
}
return clsloss_cfg_4
def get_loss_networks(K, class_num, weight=None):
if K == 8:
clsloss_cfg = get_loss_cfg_8()
elif K == 4:
clsloss_cfg = get_loss_cfg_4()
else:
raise NotImplementedError
if weight is not None:
assert len(weight) == class_num
weight = torch.tensor(weight)
loss_net = []
for i in range(1, K): # the 0-th place is kept empty
cfg = clsloss_cfg[i]
loss_net.append(
ClassifierLossModuleList(modules=[
RandomInfoProDecoder(cfg["out_plane"], cfg["upscale"],
patch_size=cfg["patch_sz"], num_patches=cfg["n_patch"],
middle_planes=cfg["mid_plane"], outplanes=cfg["in_plane"], loss=nn.L1Loss()),
AuxClassifier(cfg["out_plane"], net_config='1c2f', loss_mode='cross_entropy',
feature_dim=128, class_num=class_num,
pooling=GatedAttentionPooling(cfg["out_plane"], cfg["out_plane"] // 2, dropout=0.2),
kernel_size=cfg["kernel_size"], stride=cfg["stride"], padding=cfg["padding"],
loss_weight=weight),
],
alphas=[args.alpha, ### Hyperparameter alpha
1.],
)
)
loss_net.append(
ClassifierLossModuleList([
AuxClassifier(512, net_config='1c2f', loss_mode='cross_entropy', feature_dim=512,
pooling=GatedAttentionPooling(512, 128, dropout=0.2),
class_num=class_num,
kernel_size=5, stride=5, padding=0,
loss_weight=weight,
),
])
)
return loss_net
def main(args):
data_module = CsvDataModule(args.dataset_root, args.dataset_csv, args.batch_size, cus_transforms=get_A_transforms(),
num_workers=args.num_workers)
num_classes = args.num_classes
lr_monitor = LearningRateMonitor(logging_interval='epoch')
backbone_model = Resnet34LocalBatchNorm(K=args.K)
loss_weight = args.loss_weight
loss_networks = get_loss_networks(args.K, num_classes, weight=loss_weight)
trainer_model = LocalModule(backbone_model, loss_networks, get_metric(num_classes), args, num_classes,
valid_as_train=True)
logger = WandbLogger(project=args.project_name, name=args.run_name, log_model=True)
trainer = pl.Trainer(default_root_dir=os.path.join(args.output_dir, args.run_name), gpus=args.gpu_id,
max_epochs=args.epochs, log_every_n_steps=50, num_sanity_val_steps=0,
precision=args.precision,
logger=logger,
callbacks=lr_monitor,
progress_bar_refresh_rate=None if args.progressive else 0)
trainer.fit(trainer_model, data_module)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
args = get_arguments(parser)
# save_parameters(args)
main(args)