-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathWaPo_funcs.R
166 lines (124 loc) · 5.64 KB
/
WaPo_funcs.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
s## function library
addCounties <- function(df){
names(df)[grepl('state',names(df))] <- 'State' # shift case to match Cody
cities <- unique(df[,c('city','State')])
handmap <- read.csv('/home/kesslerd/repos/Analysis/PoliceShootings/city_county_map/HandMappings.csv')
cities$County.Name <- mapply(getCounty,cities$State,cities$city,MoreArgs=list(handmap=handmap))
cities$County.Name <- unlist(cities$County.Name)
return(merge(df,cities,all.x=TRUE))
}
getCounty <- function(state,city,handmap){
hand.candidate <- handmap[handmap$city==city & handmap$State==state,]
if (nrow(hand.candidate)==1){
return(hand.candidate['Hand_CountyName'])
}
candidates <- geo.lookup(state=state,place=city)
if (nrow(candidates) < 2){ # confirm that we have some hits
return ('NoMatch')
}
candidates <- candidates[-1,] # drop the first hit which is null
candidates <- unique(candidates) # deal with duplicates
dists <- adist(city,candidates[,'place.name'])
shortest <- min(dists)
dups <- sum(dists==shortest)
if (dups>1){
return('MultiRowMatch')
}
bestind <- which.min(dists)
county <- candidates[bestind,'county.name']
return(county)
}
binarizeArmed <- function(df){
df$armed.binary <- 'armed' # assume everybody is unarmed
df$armed.binary <- ifelse(df$armed %in% c('undetermined',''),NA,df$armed.binary) # if unsure, NA
df$armed.binary <- ifelse(df$armed %in% c('unarmed'),'unarmed',df$armed.binary) # if unarmed, set it
return(df)
}
summarizeShooting <- function(df){
df.cast <- dcast(df, State + County.Name ~ race + armed.binary,subset = .(race %in% c('B','W','H') & !is.na(armed.binary)), fun.aggregate=length,value.var='armed.binary')
return(df.cast)
}
fortifyCody <- function(df){
# merge in Cody's data
cody <- read.csv('/home/kesslerd/repos/Analysis/PoliceShootings/SupplementaryMaterials/Data/MapFileData-WithCountyResultsAndCovariates.csv')
cody$src <- 'cody'
df$src <- 'wapo'
cody <- cody[!is.na(cody$County.Name) & !is.na(cody$State),]
df <- df[!is.na(df$County.Name) & !is.na(df$State),]
df$County.Name <- strtrim(df$County.Name,23) # cody's file is truncated
df$County.Name <- iconv(df$County.Name,to='ASCII//TRANSLIT') # cody's file has no accents
full <- merge(x=df,y=cody,by=c('State','County.Name'),suffixes=c('.wapo','.cody'),all.x=TRUE)
mask <- complete.cases(
full[,c('BAC_TOT',
'WA_TOT',
'B_unarmed',
'B_armed',
'W_unarmed',
'W_armed')])
full <- full[mask,]
full <- full[,1:64]
return(full)
}
countyShootings <- function(df,sfit){
# extract county level means and sds
# extract county-level posteriors, log xform, then get mean and sd, and tack on to df
countyRR <- extract(sfit,pars=c('RR_Black_Unarmed_Versus_White_Unarmed'))[[1]]
countyMeans <- apply(log(countyRR),2,mean)
countySDs <- apply(log(countyRR),2,sd)
df$m.log.RR_Black_Unarmed_Versus_White_Unarmed <- countyMeans
df$sd.log.RR_Black_Unarmed_Versus_White_Unarmed <- countySDs
return(df)
}
covPrep <- function(g){
# prepare the dataframe for running covariate models
# for now: just model 12 is supported
#
# note: return the list that stan wants
Ym<- g$m.log.RR_Black_Unarmed_Versus_White_Unarmed # First Outcome
Ysd<- g$sd.log.RR_Black_Unarmed_Versus_White_Unarmed #
WhiteAssault <- (g$AssaultsWhite.sum/g$WA_TOT)
BlackAssault <- (g$AssaultsBlack.sum/g$BAC_TOT)
Pop<-g$TOT_POP
BlackRatio<-(g$BAC_TOT+1)/Pop
g2<- data.frame(g$County.FIPS.Code,Ym,Ysd, Pop,BlackRatio,WhiteAssault,BlackAssault)
g3 <- g2[complete.cases(g2$Ym),]
Ym <- g3$Ym
Ysd <- g3$Ysd
N<-length(Ym)
Pop <-g3$Pop/sd(g3$Pop,na.rm=T)
BlackRatio<-g3$BlackRatio
WhiteAssault <-g3$WhiteAssault/sd(g3$WhiteAssault,na.rm=T)
MaxWhiteAssault<-max(WhiteAssault,na.rm=T)
BlackAssault <-g3$BlackAssault/sd(g3$BlackAssault,na.rm=T)
MaxBlackAssault<-max(BlackAssault,na.rm=T)
WhiteAssault <- ifelse(WhiteAssault==0,NA,WhiteAssault)
MissCumSumWhiteAssault <-cumsum(is.na(WhiteAssault))
MissCumSumWhiteAssault <-ifelse(MissCumSumWhiteAssault ==0,1,MissCumSumWhiteAssault )
NonMissWhiteAssault <-ifelse(is.na(WhiteAssault ),0,1)
NmissWhiteAssault <-sum(is.na(WhiteAssault ))
WhiteAssault [is.na(WhiteAssault )]<-9999999
BlackAssault <- ifelse(BlackAssault==0,NA,BlackAssault)
MissCumSumBlackAssault <-cumsum(is.na(BlackAssault))
MissCumSumBlackAssault <-ifelse(MissCumSumBlackAssault ==0,1,MissCumSumBlackAssault )
NonMissBlackAssault <-ifelse(is.na(BlackAssault ),0,1)
NmissBlackAssault <-sum(is.na(BlackAssault ))
BlackAssault [is.na(BlackAssault )]<-9999999
Ones<-rep(1,N)
model_dat <-list(N=N,
Ym=Ym,
Ysd=Ysd,
MissCumSumWhiteAssault=MissCumSumWhiteAssault,
NonMissWhiteAssault=NonMissWhiteAssault,
NmissWhiteAssault=NmissWhiteAssault,
WhiteAssault=WhiteAssault,
MaxWhiteAssault=MaxWhiteAssault,
MissCumSumBlackAssault=MissCumSumBlackAssault,
NonMissBlackAssault=NonMissBlackAssault,
NmissBlackAssault=NmissBlackAssault,
BlackAssault=BlackAssault,
MaxBlackAssault=MaxBlackAssault,
BlackRatio=BlackRatio,
Pop=Pop,
Ones=Ones
)
}