@@ -125,8 +125,7 @@ following sql statements
125
125
Want to increase the performance of your model by tuning the
126
126
parameters? Use the hyperparameter tuning directly
127
127
in SQL using below SQL syntax, choose different tuners
128
- from the dask_ml package based on memory and compute constraints and
129
- for more details refer to the `dask ml documentation <https://ml.dask.org/hyper-parameter-search.html#incremental-hyperparameter-optimization >`_
128
+ based on memory and compute constraints.
130
129
131
130
..
132
131
TODO - add a GPU section to these examples once we have working CREATE EXPERIMENT tests for GPU
@@ -135,7 +134,7 @@ for more details refer to the `dask ml documentation <https://ml.dask.org/hyper-
135
134
136
135
CREATE EXPERIMENT my_exp WITH (
137
136
model_class = 'sklearn.ensemble.GradientBoostingClassifier',
138
- experiment_class = 'dask_ml .model_selection.GridSearchCV',
137
+ experiment_class = 'sklearn .model_selection.GridSearchCV',
139
138
tune_parameters = (n_estimators = ARRAY [16, 32, 2],
140
139
learning_rate = ARRAY [0.1,0.01,0.001],
141
140
max_depth = ARRAY [3,4,5,10]
@@ -258,7 +257,6 @@ and the boolean target ``label``.
258
257
SELECT * FROM training_data
259
258
260
259
-- We can now train a model from the sklearn package.
261
- -- Make sure to install it together with dask-ml with conda or pip.
262
260
CREATE OR REPLACE MODEL my_model WITH (
263
261
model_class = 'sklearn.ensemble.GradientBoostingClassifier',
264
262
wrap_predict = True,
@@ -282,7 +280,7 @@ and the boolean target ``label``.
282
280
-- experiment to tune different hyperparameters
283
281
CREATE EXPERIMENT my_exp WITH(
284
282
model_class = 'sklearn.ensemble.GradientBoostingClassifier',
285
- experiment_class = 'dask_ml .model_selection.GridSearchCV',
283
+ experiment_class = 'sklearn .model_selection.GridSearchCV',
286
284
tune_parameters = (n_estimators = ARRAY [16, 32, 2],
287
285
learning_rate = ARRAY [0.1,0.01,0.001],
288
286
max_depth = ARRAY [3,4,5,10]
0 commit comments