-
-
Notifications
You must be signed in to change notification settings - Fork 260
Open
Description
I am getting different results from sklearn StandardScaler and dask StandardScaler.
scaler_sk = sklearn.preprocessing.StandardScaler()
scaler_d = dask_ml.preprocessing.StandardScaler()
scaler_sk.fit(df_pd[["SUMMESSAGECOUNT"]])
scaler_d.fit(df_dask[["SUMMESSAGECOUNT"]])
Dask scaler
scaler_d.mean_[0], scaler_d.var_[0]
output: (19.157653421114507, 47431.17794342375)
Sklearn Scaler
scaler_sk.mean_[0], scaler_sk.var_[0]
output: (19.157653421114507, 47431.17794342373)
I know the difference is negligible. But it is influencing my model training on prophet. Could you please suggest any way to make them identical without using compute()
.
Metadata
Metadata
Assignees
Labels
No labels