|
| 1 | +import pandas as pd |
| 2 | +import time |
| 3 | +import warnings |
| 4 | +import matplotlib.pyplot as plt |
| 5 | +import seaborn as sns |
| 6 | +import numpy as np |
| 7 | +import numpy as np |
| 8 | +import re |
| 9 | +import pandas as pd |
| 10 | +import random |
| 11 | +import glob |
| 12 | +import ReadFiles as rf |
| 13 | +import os |
| 14 | + |
| 15 | +warnings.filterwarnings("ignore") |
| 16 | + |
| 17 | + |
| 18 | +def draw_plots(df): |
| 19 | + |
| 20 | + columns = [f"Feature_{i}" for i in range(df.shape[1])] |
| 21 | + |
| 22 | + # Plot a histogram for one of the features using Matplotlib |
| 23 | + plt.figure(figsize=(10, 6)) |
| 24 | + plt.hist(df['$startdate'], bins=100, color='blue', alpha=0.7) |
| 25 | + plt.title('Histogram of Feature 0') |
| 26 | + plt.xlabel('Feature Value') |
| 27 | + plt.ylabel('Frequency') |
| 28 | + plt.show() |
| 29 | + |
| 30 | + # Plot a histogram for one of the features using Matplotlib |
| 31 | + plt.figure(figsize=(10, 6)) |
| 32 | + plt.hist(df['$retdate'], bins=100, color='blue', alpha=0.7) |
| 33 | + plt.title('Histogram of Feature 0') |
| 34 | + plt.xlabel('Feature Value') |
| 35 | + plt.ylabel('Frequency') |
| 36 | + plt.show() |
| 37 | + |
| 38 | + # Plot a scatter plot between two features using Seaborn |
| 39 | + plt.figure(figsize=(10, 6)) |
| 40 | + sns.scatterplot(x= df['$startdate'], y= df['$disk_files'], data=df, alpha=0.5) |
| 41 | + plt.title('Scatter Plot between Feature 1 and Feature 2') |
| 42 | + plt.xlabel('Feature 1 Value') |
| 43 | + plt.ylabel('Feature 2 Value') |
| 44 | + plt.show() |
| 45 | + |
| 46 | + |
| 47 | +def feature_count(df): |
| 48 | + # Get the number of features |
| 49 | + n_features = len(df.columns) |
| 50 | + |
| 51 | + # Iterate over the features |
| 52 | + for i in range(0, n_features, 2): |
| 53 | + # Get the features in the current iteration |
| 54 | + features_i = df.columns[i:i + 2] |
| 55 | + |
| 56 | + # Create a plot |
| 57 | + fig, ax = plt.subplots() |
| 58 | + |
| 59 | + # Plot the frequency of each feature in the plot |
| 60 | + df[features_i].value_counts().plot(kind='bar', ax=ax) |
| 61 | + ax.set_title('Frequency of Features {}'.format(i)) |
| 62 | + |
| 63 | + # Show the plot |
| 64 | + plt.tight_layout() |
| 65 | + plt.show() |
| 66 | + |
| 67 | +def queries_by_date(df): |
| 68 | + |
| 69 | + # Group the data by 'date' and count the number of queries for each day |
| 70 | + daily_query_counts = df['$date'].value_counts().sort_index() |
| 71 | + |
| 72 | + # Create a plot |
| 73 | + plt.figure(figsize=(10, 6)) |
| 74 | + plt.plot(daily_query_counts.index, daily_query_counts.values, marker='o', linestyle='-', color='b') |
| 75 | + plt.title('Number of Queries Generated Each Day') |
| 76 | + plt.xlabel('Date') |
| 77 | + plt.ylabel('Number of Queries') |
| 78 | + plt.xticks(rotation=45) |
| 79 | + plt.grid(True) |
| 80 | + |
| 81 | + # Show the plot |
| 82 | + plt.tight_layout() |
| 83 | + plt.show() |
| 84 | + |
| 85 | +def queries_by_verb(df): |
| 86 | + |
| 87 | + # Group the data by 'date' and count the number of queries for each day |
| 88 | + daily_query_counts = df['$verb'].value_counts().sort_index() |
| 89 | + |
| 90 | + # Create a plot |
| 91 | + plt.figure(figsize=(10, 6)) |
| 92 | + plt.plot(daily_query_counts.index, daily_query_counts.values, marker='o', color='b') |
| 93 | + plt.title('Number of Queries categorised by action to be taken on the query') |
| 94 | + plt.xlabel('Verb') |
| 95 | + plt.ylabel('Number of Queries') |
| 96 | + plt.xticks(rotation=45) |
| 97 | + plt.grid(True) |
| 98 | + |
| 99 | + # Show the plot |
| 100 | + plt.tight_layout() |
| 101 | + plt.show() |
| 102 | + |
| 103 | +def convert_objects_to_numbers(df): |
| 104 | + |
| 105 | + # Step 1: Identify columns with object data type |
| 106 | + object_columns = df.select_dtypes(include=['object']).columns |
| 107 | + |
| 108 | + # Step 2: Convert each object column to numerical values |
| 109 | + for col in object_columns: |
| 110 | + unique_values = df[col].unique() |
| 111 | + mapping = {value: idx + 1 for idx, value in enumerate(unique_values)} |
| 112 | + df[col] = df[col].map(mapping).astype(np.float64) |
| 113 | + |
| 114 | + # Fill missing values with 0 |
| 115 | + df.fillna(0, inplace=True) |
| 116 | + # df.to_csv("/Users/anas/Documents/UoR/MSc Project/Report/Logs/output2.csv", sep=',', encoding='utf-8', index=False) |
| 117 | + |
| 118 | + return df |
| 119 | + |
| 120 | +def feature_correlation(df): |
| 121 | + |
| 122 | + df1 = df.copy() |
| 123 | + # Convert date columns to datetime objects |
| 124 | + |
| 125 | + df1['$startdate'] = pd.to_datetime(df['$startdate']) |
| 126 | + df1['$starttime'] = pd.to_datetime(df['$starttime']) |
| 127 | + |
| 128 | + correlation_matrix = df1.corr() |
| 129 | + |
| 130 | + # Print labels with correlations greater than 0.8 |
| 131 | + high_correlation_labels = [] |
| 132 | + for col in correlation_matrix.columns: |
| 133 | + correlated_cols = correlation_matrix.index[(correlation_matrix[col] > 0.8) | (correlation_matrix[col] < -0.8)].tolist() |
| 134 | + if len(correlated_cols) == 0: |
| 135 | + break |
| 136 | + else: |
| 137 | + correlated_cols.remove(col) # Remove the column itself from the list |
| 138 | + for correlated_col in correlated_cols.copy(): # Use a copy of the list to iterate |
| 139 | + if (col, correlated_col) not in high_correlation_labels and (correlated_col, col) not in high_correlation_labels: |
| 140 | + high_correlation_labels.append((col, correlated_col)) |
| 141 | + print(f"Correlation > 0.8: {col} - {correlated_col} - {correlation_matrix.loc[col, correlated_col]}") |
| 142 | + |
| 143 | + # Create masks for high and low correlations |
| 144 | + mask_high = np.abs(correlation_matrix) > 0.8 |
| 145 | + mask_low = np.abs(correlation_matrix) < -0.7 |
| 146 | + |
| 147 | + # Create correlation matrices with masked values |
| 148 | + correlation_matrix_high = np.where(mask_high, correlation_matrix, np.nan) |
| 149 | + |
| 150 | + # Plot the heatmap for high correlations |
| 151 | + plt.figure(figsize=(8, 6)) |
| 152 | + sns.heatmap(correlation_matrix_high, annot=False, cmap='coolwarm', center=0) |
| 153 | + plt.title('Correlation Heatmap (High Correlations)') |
| 154 | + plt.xticks(range(len(correlation_matrix.columns)), correlation_matrix.columns, rotation=90) |
| 155 | + plt.yticks(range(len(correlation_matrix.columns)), correlation_matrix.columns, rotation = 0) |
| 156 | + plt.show() |
| 157 | + |
| 158 | + |
| 159 | +def outliers(df): |
| 160 | + |
| 161 | + plt.figure(figsize=(12,8)) |
| 162 | + sns.boxplot(data=df, orient='v') # 'orient' specifies horizontal orientation |
| 163 | + plt.title('Box Plots of Features') |
| 164 | + plt.xlabel('Values') |
| 165 | + plt.show() |
| 166 | + |
| 167 | + # Calculate Z-scores for each feature |
| 168 | + z_scores = np.abs((df - df.mean()) / df.std()) |
| 169 | + |
| 170 | + # Set a threshold for outlier detection (e.g., Z-score > 3) |
| 171 | + outlier_threshold = 3 |
| 172 | + |
| 173 | + # Create a DataFrame of boolean values indicating outliers |
| 174 | + outliers = z_scores > outlier_threshold |
| 175 | + |
| 176 | + # Summarize which features have outliers |
| 177 | + features_with_outliers = outliers.any() |
| 178 | + |
| 179 | + print("Features with Outliers:", features_with_outliers[features_with_outliers == True].index) |
| 180 | + |
| 181 | + |
| 182 | +# Read file in data frame |
| 183 | +def read_into_df(filename): |
| 184 | + return pd.read_csv(filename) |
| 185 | + |
| 186 | +# Check duplicate values |
| 187 | +def check_duplicates(df): |
| 188 | + |
| 189 | + duplicated_df = df.duplicated(keep=False) |
| 190 | + |
| 191 | + # Count the number of unique and duplicate rows |
| 192 | + num_unique = (~duplicated_df).sum() |
| 193 | + num_duplicates = duplicated_df.sum() |
| 194 | + |
| 195 | + # Create a bar plot |
| 196 | + plt.bar(['Unique', 'Duplicate'], [num_unique, num_duplicates]) |
| 197 | + plt.xlabel('Row Type') |
| 198 | + plt.ylabel('Count') |
| 199 | + plt.title('Unique vs. Duplicate Rows') |
| 200 | + |
| 201 | + # Display the plot |
| 202 | + plt.show() |
| 203 | + |
| 204 | +# Check null values |
| 205 | +def check_null_values(df): |
| 206 | + missing_values = df.isnull().sum() |
| 207 | + total_rows = len(df) |
| 208 | + percentage_null_values = (missing_values/total_rows)*100 |
| 209 | + result = [] |
| 210 | + for column, count in missing_values.items(): |
| 211 | + percentage = percentage_null_values[column] |
| 212 | + result.append({'Column': column, 'Null Count': count, '% Null Values': percentage}) |
| 213 | + |
| 214 | + result_df = pd.DataFrame(result) |
| 215 | + result_df.to_csv('/Users/anas/Documents/UoR/MSc Project/Report/Logs/Null Values.csv', index=False) |
| 216 | + return result_df |
| 217 | + |
| 218 | +# Check unique values |
| 219 | +def check_unique_values(df): |
| 220 | + result = [] |
| 221 | + for column in df.columns: |
| 222 | + unique_values_count = df[column].nunique() |
| 223 | + unique_values = df[column].unique() |
| 224 | + result.append({'Column': column, 'Unique Values': unique_values_count, |
| 225 | + 'List of Unique Values': unique_values }) |
| 226 | + |
| 227 | + |
| 228 | + result_df = pd.DataFrame(result) |
| 229 | + result_df.to_csv('/Users/anas/Documents/UoR/MSc Project/Report/Logs/Column Unique Values1.csv', index=False) |
| 230 | + |
| 231 | + |
| 232 | +def check_missingvalues(df): |
| 233 | + |
| 234 | + #Finding missing values in the dataframe |
| 235 | + missing_values = df.isnull().sum() |
| 236 | + total_values = df.count() |
| 237 | + |
| 238 | + # Splitting columns into two groups |
| 239 | + num_columns = df.shape[1] |
| 240 | + half_num_columns = num_columns // 2 |
| 241 | + first_half_columns = df.columns[:half_num_columns] |
| 242 | + second_half_columns = df.columns[half_num_columns:] |
| 243 | + |
| 244 | + # Creating subplots |
| 245 | + fig, axes = plt.subplots(2, 1, figsize=(15, 6)) |
| 246 | + |
| 247 | + # Plotting for the first half of columns |
| 248 | + axes[0].bar(total_values[first_half_columns].index, total_values[first_half_columns].values, color='blue', label='Total Values') |
| 249 | + axes[0].bar(missing_values[first_half_columns].index, missing_values[first_half_columns].values, color='orange', label='Missing Values') |
| 250 | + axes[0].set_xlabel('Features') |
| 251 | + axes[0].set_ylabel('Count') |
| 252 | + axes[0].set_title('Total Values vs Missing Values') |
| 253 | + axes[0].set_xticklabels(labels=first_half_columns, rotation=90) |
| 254 | + axes[0].legend() |
| 255 | + |
| 256 | + # Plotting for the second half of columns |
| 257 | + axes[1].bar(total_values[second_half_columns].index, total_values[second_half_columns].values, color='blue', label='Total Values') |
| 258 | + axes[1].bar(missing_values[second_half_columns].index, missing_values[second_half_columns].values, color='orange', label='Missing Values') |
| 259 | + axes[1].set_xlabel('Features') |
| 260 | + axes[1].set_ylabel('Count') |
| 261 | + axes[1].set_title('Total Values vs Missing Values') |
| 262 | + axes[1].set_xticklabels(labels=second_half_columns, rotation=90) |
| 263 | + axes[1].legend() |
| 264 | + |
| 265 | + plt.tight_layout() |
| 266 | + plt.show() |
| 267 | + |
| 268 | + return |
| 269 | + |
| 270 | +def list_unique_values(df, columns): |
| 271 | + result = [] |
| 272 | + for column in df.columns: |
| 273 | + unique_values = df[column].unique() |
| 274 | + result.append({'Column': column,'List of Unique Values': unique_values}) |
| 275 | + |
| 276 | + result_df = pd.DataFrame(result) |
| 277 | + result_df.to_csv('/Users/anas/Documents/UoR/MSc Project/Report/Logs/ListOfUniqueValues.csv', index=False) |
| 278 | + |
| 279 | +if __name__ == '__main__': |
| 280 | + |
| 281 | + filename = "/Users/anas/Documents/UoR/MSc Project/Report/Logs/ConvertToLog.csv" |
| 282 | + with open(filename, 'r') as file: |
| 283 | + start = time.time() |
| 284 | + chunk = pd.read_csv(filename,chunksize=1000000) |
| 285 | + end = time.time() |
| 286 | + print("Read csv with chunks: ",(end-start),"sec") |
| 287 | + start = time.time() |
| 288 | + pd_df = pd.concat(chunk) |
| 289 | + end = time.time() |
| 290 | + print("Concatenation time: ",(end-start),"sec") |
| 291 | + |
| 292 | + |
| 293 | + start = time.time() |
| 294 | + check_unique_values(pd_df) |
| 295 | + end = time.time() |
| 296 | + print(f'List Unique values time: {end - start}, sec') |
| 297 | + |
| 298 | + |
| 299 | + |
0 commit comments