-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
69 lines (60 loc) · 2.61 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
from pytorch_lightning import loggers as pl_loggers
from pytorch_lightning.callbacks import LearningRateMonitor
from pytorch_lightning.callbacks.progress import TQDMProgressBar
from custom_models.dataset import CIFARDataModule
from custom_models.lightning_playground.modules.custom_resnet import CustomResnetModule
from pytorch_lightning.loggers import CSVLogger
from custom_models.custom_resnet import CustomResnet
import torch
from pytorch_lightning import Trainer
import pandas as pd
from IPython.core.display import display
import seaborn as sn
import os
def make_trainer(max_epochs,train_loader,test_loader,max_lr,
learning_rate=0.01,weight_decay=1e-4,
refresh_rate=10,accelerator="auto",
tensorboard_logs = "tf_logs/",
csv_logs = "csv+logs/"
):
tb_logger = pl_loggers.TensorBoardLogger(tensorboard_logs)
csv_logger = CSVLogger(save_dir=csv_logs)
model = CustomResnetModule(max_lr,
learning_rate,
weight_decay,
steps_per_epoch=len(train_loader),
pct_start=5/max_epochs,
epochs=max_epochs)
data_module = CIFARDataModule(train_loader,test_loader)
trainer = Trainer(
max_epochs=max_epochs,
accelerator=accelerator,
devices=1 if torch.cuda.is_available() else None, # limiting got iPython runs
logger=[tb_logger, csv_logger],
callbacks=[LearningRateMonitor(logging_interval="step"), TQDMProgressBar(refresh_rate=refresh_rate)],
)
trainer.fit(model,data_module)
return trainer
def evaluate_performace(csv_log_file_path):
metrics = pd.read_csv(csv_log_file_path)
del metrics["step"]
metrics.set_index("epoch", inplace=True)
display(metrics.dropna(axis=1, how="all").head())
sn.relplot(data=metrics, kind="line")
def save_checkpoints(path="/content/tf_logs/lightning_logs/"):
versions = os.listdir(path)
versionid = []
for i in versions:
versionid.append(int(i.replace("version_","")))
best_weight_folder = os.path.join(path,f"version_{max(versionid)}","checkpoints")
weights = os.listdir(best_weight_folder)[0]
weights_path = os.path.join(best_weight_folder,weights)
print(weights_path)
device = torch.device("cpu")
# trainer.save_checkpoint("best.ckpt")
best_model = torch.load(weights_path)
torch.save(best_model['state_dict'], f'best_model.pth')
litemodel = CustomResnet()
litemodel.load_state_dict(torch.load("best_model.pth",map_location='cpu'))
device = "cpu"
return litemodel,"best_model.pth"