From 75399f6aefaab78380e7d33a3d0f9a50fa664658 Mon Sep 17 00:00:00 2001
From: Bessie Garrick <bessie.garrick@mckesson.com>
Date: Fri, 20 Jul 2018 15:28:14 -0500
Subject: [PATCH] Bessie Titanic complete

---
 .../Titanic-answer-checkpoint.ipynb           | 821 ++++++++++++++++++
 Titanic-answer.ipynb                          | 821 ++++++++++++++++++
 2 files changed, 1642 insertions(+)
 create mode 100644 .ipynb_checkpoints/Titanic-answer-checkpoint.ipynb
 create mode 100644 Titanic-answer.ipynb

diff --git a/.ipynb_checkpoints/Titanic-answer-checkpoint.ipynb b/.ipynb_checkpoints/Titanic-answer-checkpoint.ipynb
new file mode 100644
index 0000000..533e7db
--- /dev/null
+++ b/.ipynb_checkpoints/Titanic-answer-checkpoint.ipynb
@@ -0,0 +1,821 @@
+{
+ "cells": [
+  {
+   "cell_type": "code",
+   "execution_count": 339,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "import numpy as np\n",
+    "import pandas as pd\n",
+    "import matplotlib.pyplot as plt\n",
+    "import statsmodels.api as sm\n",
+    "from sklearn.model_selection import train_test_split\n",
+    "from sklearn.metrics import r2_score\n",
+    "from pandas.plotting import scatter_matrix\n",
+    "from sklearn.linear_model import LogisticRegression\n",
+    "%matplotlib inline"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 340,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<style scoped>\n",
+       "    .dataframe tbody tr th:only-of-type {\n",
+       "        vertical-align: middle;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe tbody tr th {\n",
+       "        vertical-align: top;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe thead th {\n",
+       "        text-align: right;\n",
+       "    }\n",
+       "</style>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr style=\"text-align: right;\">\n",
+       "      <th></th>\n",
+       "      <th>PassengerId</th>\n",
+       "      <th>Survived</th>\n",
+       "      <th>Pclass</th>\n",
+       "      <th>Name</th>\n",
+       "      <th>Sex</th>\n",
+       "      <th>Age</th>\n",
+       "      <th>SibSp</th>\n",
+       "      <th>Parch</th>\n",
+       "      <th>Ticket</th>\n",
+       "      <th>Fare</th>\n",
+       "      <th>Cabin</th>\n",
+       "      <th>Embarked</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>0</th>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>3</td>\n",
+       "      <td>Braund, Mr. Owen Harris</td>\n",
+       "      <td>male</td>\n",
+       "      <td>22.0</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>A/5 21171</td>\n",
+       "      <td>7.2500</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>S</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>1</th>\n",
+       "      <td>2</td>\n",
+       "      <td>1</td>\n",
+       "      <td>1</td>\n",
+       "      <td>Cumings, Mrs. John Bradley (Florence Briggs Th...</td>\n",
+       "      <td>female</td>\n",
+       "      <td>38.0</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>PC 17599</td>\n",
+       "      <td>71.2833</td>\n",
+       "      <td>C85</td>\n",
+       "      <td>C</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2</th>\n",
+       "      <td>3</td>\n",
+       "      <td>1</td>\n",
+       "      <td>3</td>\n",
+       "      <td>Heikkinen, Miss. Laina</td>\n",
+       "      <td>female</td>\n",
+       "      <td>26.0</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0</td>\n",
+       "      <td>STON/O2. 3101282</td>\n",
+       "      <td>7.9250</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>S</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>3</th>\n",
+       "      <td>4</td>\n",
+       "      <td>1</td>\n",
+       "      <td>1</td>\n",
+       "      <td>Futrelle, Mrs. Jacques Heath (Lily May Peel)</td>\n",
+       "      <td>female</td>\n",
+       "      <td>35.0</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>113803</td>\n",
+       "      <td>53.1000</td>\n",
+       "      <td>C123</td>\n",
+       "      <td>S</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>4</th>\n",
+       "      <td>5</td>\n",
+       "      <td>0</td>\n",
+       "      <td>3</td>\n",
+       "      <td>Allen, Mr. William Henry</td>\n",
+       "      <td>male</td>\n",
+       "      <td>35.0</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0</td>\n",
+       "      <td>373450</td>\n",
+       "      <td>8.0500</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>S</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "   PassengerId  Survived  Pclass  \\\n",
+       "0            1         0       3   \n",
+       "1            2         1       1   \n",
+       "2            3         1       3   \n",
+       "3            4         1       1   \n",
+       "4            5         0       3   \n",
+       "\n",
+       "                                                Name     Sex   Age  SibSp  \\\n",
+       "0                            Braund, Mr. Owen Harris    male  22.0      1   \n",
+       "1  Cumings, Mrs. John Bradley (Florence Briggs Th...  female  38.0      1   \n",
+       "2                             Heikkinen, Miss. Laina  female  26.0      0   \n",
+       "3       Futrelle, Mrs. Jacques Heath (Lily May Peel)  female  35.0      1   \n",
+       "4                           Allen, Mr. William Henry    male  35.0      0   \n",
+       "\n",
+       "   Parch            Ticket     Fare Cabin Embarked  \n",
+       "0      0         A/5 21171   7.2500   NaN        S  \n",
+       "1      0          PC 17599  71.2833   C85        C  \n",
+       "2      0  STON/O2. 3101282   7.9250   NaN        S  \n",
+       "3      0            113803  53.1000  C123        S  \n",
+       "4      0            373450   8.0500   NaN        S  "
+      ]
+     },
+     "execution_count": 340,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "df = pd.read_csv('train.csv')\n",
+    "df.head()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 341,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "<class 'pandas.core.frame.DataFrame'>\n",
+      "RangeIndex: 891 entries, 0 to 890\n",
+      "Data columns (total 12 columns):\n",
+      "PassengerId    891 non-null int64\n",
+      "Survived       891 non-null int64\n",
+      "Pclass         891 non-null int64\n",
+      "Name           891 non-null object\n",
+      "Sex            891 non-null object\n",
+      "Age            714 non-null float64\n",
+      "SibSp          891 non-null int64\n",
+      "Parch          891 non-null int64\n",
+      "Ticket         891 non-null object\n",
+      "Fare           891 non-null float64\n",
+      "Cabin          204 non-null object\n",
+      "Embarked       889 non-null object\n",
+      "dtypes: float64(2), int64(5), object(5)\n",
+      "memory usage: 83.6+ KB\n"
+     ]
+    }
+   ],
+   "source": [
+    "df.info()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 342,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "0    0\n",
+       "1    1\n",
+       "2    1\n",
+       "3    1\n",
+       "4    0\n",
+       "Name: Survived, dtype: int64"
+      ]
+     },
+     "execution_count": 342,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "y = df.Survived\n",
+    "y.head()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 343,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<style scoped>\n",
+       "    .dataframe tbody tr th:only-of-type {\n",
+       "        vertical-align: middle;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe tbody tr th {\n",
+       "        vertical-align: top;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe thead th {\n",
+       "        text-align: right;\n",
+       "    }\n",
+       "</style>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr style=\"text-align: right;\">\n",
+       "      <th></th>\n",
+       "      <th>PassengerId</th>\n",
+       "      <th>Survived</th>\n",
+       "      <th>Pclass</th>\n",
+       "      <th>Name</th>\n",
+       "      <th>Sex</th>\n",
+       "      <th>Age</th>\n",
+       "      <th>SibSp</th>\n",
+       "      <th>Parch</th>\n",
+       "      <th>Ticket</th>\n",
+       "      <th>Fare</th>\n",
+       "      <th>Cabin</th>\n",
+       "      <th>Embarked</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>0</th>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>3</td>\n",
+       "      <td>Braund, Mr. Owen Harris</td>\n",
+       "      <td>male</td>\n",
+       "      <td>22.0</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>A/5 21171</td>\n",
+       "      <td>7.2500</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>S</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>1</th>\n",
+       "      <td>2</td>\n",
+       "      <td>1</td>\n",
+       "      <td>1</td>\n",
+       "      <td>Cumings, Mrs. John Bradley (Florence Briggs Th...</td>\n",
+       "      <td>female</td>\n",
+       "      <td>38.0</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>PC 17599</td>\n",
+       "      <td>71.2833</td>\n",
+       "      <td>C85</td>\n",
+       "      <td>C</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2</th>\n",
+       "      <td>3</td>\n",
+       "      <td>1</td>\n",
+       "      <td>3</td>\n",
+       "      <td>Heikkinen, Miss. Laina</td>\n",
+       "      <td>female</td>\n",
+       "      <td>26.0</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0</td>\n",
+       "      <td>STON/O2. 3101282</td>\n",
+       "      <td>7.9250</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>S</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>3</th>\n",
+       "      <td>4</td>\n",
+       "      <td>1</td>\n",
+       "      <td>1</td>\n",
+       "      <td>Futrelle, Mrs. Jacques Heath (Lily May Peel)</td>\n",
+       "      <td>female</td>\n",
+       "      <td>35.0</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>113803</td>\n",
+       "      <td>53.1000</td>\n",
+       "      <td>C123</td>\n",
+       "      <td>S</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>4</th>\n",
+       "      <td>5</td>\n",
+       "      <td>0</td>\n",
+       "      <td>3</td>\n",
+       "      <td>Allen, Mr. William Henry</td>\n",
+       "      <td>male</td>\n",
+       "      <td>35.0</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0</td>\n",
+       "      <td>373450</td>\n",
+       "      <td>8.0500</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>S</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "   PassengerId  Survived  Pclass  \\\n",
+       "0            1         0       3   \n",
+       "1            2         1       1   \n",
+       "2            3         1       3   \n",
+       "3            4         1       1   \n",
+       "4            5         0       3   \n",
+       "\n",
+       "                                                Name     Sex   Age  SibSp  \\\n",
+       "0                            Braund, Mr. Owen Harris    male  22.0      1   \n",
+       "1  Cumings, Mrs. John Bradley (Florence Briggs Th...  female  38.0      1   \n",
+       "2                             Heikkinen, Miss. Laina  female  26.0      0   \n",
+       "3       Futrelle, Mrs. Jacques Heath (Lily May Peel)  female  35.0      1   \n",
+       "4                           Allen, Mr. William Henry    male  35.0      0   \n",
+       "\n",
+       "   Parch            Ticket     Fare Cabin Embarked  \n",
+       "0      0         A/5 21171   7.2500   NaN        S  \n",
+       "1      0          PC 17599  71.2833   C85        C  \n",
+       "2      0  STON/O2. 3101282   7.9250   NaN        S  \n",
+       "3      0            113803  53.1000  C123        S  \n",
+       "4      0            373450   8.0500   NaN        S  "
+      ]
+     },
+     "execution_count": 343,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "df[df.Age.isna()]\n",
+    "df.head()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 344,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "Age_mean = df.Age.mean()\n",
+    "df['Age'] = df.Age.fillna(Age_mean)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 345,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "<class 'pandas.core.frame.DataFrame'>\n",
+      "RangeIndex: 891 entries, 0 to 890\n",
+      "Data columns (total 12 columns):\n",
+      "PassengerId    891 non-null int64\n",
+      "Survived       891 non-null int64\n",
+      "Pclass         891 non-null int64\n",
+      "Name           891 non-null object\n",
+      "Sex            891 non-null object\n",
+      "Age            891 non-null float64\n",
+      "SibSp          891 non-null int64\n",
+      "Parch          891 non-null int64\n",
+      "Ticket         891 non-null object\n",
+      "Fare           891 non-null float64\n",
+      "Cabin          204 non-null object\n",
+      "Embarked       889 non-null object\n",
+      "dtypes: float64(2), int64(5), object(5)\n",
+      "memory usage: 83.6+ KB\n"
+     ]
+    }
+   ],
+   "source": [
+    "df.info()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 361,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "<class 'pandas.core.frame.DataFrame'>\n",
+      "RangeIndex: 891 entries, 0 to 890\n",
+      "Data columns (total 6 columns):\n",
+      "Pclass    891 non-null int64\n",
+      "Sex       891 non-null object\n",
+      "Age       891 non-null float64\n",
+      "SibSp     891 non-null int64\n",
+      "Parch     891 non-null int64\n",
+      "Fare      891 non-null float64\n",
+      "dtypes: float64(2), int64(3), object(1)\n",
+      "memory usage: 41.8+ KB\n"
+     ]
+    }
+   ],
+   "source": [
+    "x = df.drop(columns=['Survived', 'Cabin', 'PassengerId', 'Name','Embarked', 'Ticket'])\n",
+    "x.head()\n",
+    "x.info()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 362,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<style scoped>\n",
+       "    .dataframe tbody tr th:only-of-type {\n",
+       "        vertical-align: middle;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe tbody tr th {\n",
+       "        vertical-align: top;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe thead th {\n",
+       "        text-align: right;\n",
+       "    }\n",
+       "</style>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr style=\"text-align: right;\">\n",
+       "      <th></th>\n",
+       "      <th>Pclass</th>\n",
+       "      <th>Age</th>\n",
+       "      <th>SibSp</th>\n",
+       "      <th>Parch</th>\n",
+       "      <th>Fare</th>\n",
+       "      <th>Sex_female</th>\n",
+       "      <th>Sex_male</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>0</th>\n",
+       "      <td>3</td>\n",
+       "      <td>22.0</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>7.2500</td>\n",
+       "      <td>0</td>\n",
+       "      <td>1</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>1</th>\n",
+       "      <td>1</td>\n",
+       "      <td>38.0</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>71.2833</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2</th>\n",
+       "      <td>3</td>\n",
+       "      <td>26.0</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0</td>\n",
+       "      <td>7.9250</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>3</th>\n",
+       "      <td>1</td>\n",
+       "      <td>35.0</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>53.1000</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>4</th>\n",
+       "      <td>3</td>\n",
+       "      <td>35.0</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0</td>\n",
+       "      <td>8.0500</td>\n",
+       "      <td>0</td>\n",
+       "      <td>1</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "   Pclass   Age  SibSp  Parch     Fare  Sex_female  Sex_male\n",
+       "0       3  22.0      1      0   7.2500           0         1\n",
+       "1       1  38.0      1      0  71.2833           1         0\n",
+       "2       3  26.0      0      0   7.9250           1         0\n",
+       "3       1  35.0      1      0  53.1000           1         0\n",
+       "4       3  35.0      0      0   8.0500           0         1"
+      ]
+     },
+     "execution_count": 362,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "x = pd.get_dummies(x)\n",
+    "x.head()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 363,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "x = x.drop(columns=['Sex_male'])"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 364,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "((596, 6), (295, 6))"
+      ]
+     },
+     "execution_count": 364,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.33, random_state=42)\n",
+    "x_train.shape, x_test.shape"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 365,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<style scoped>\n",
+       "    .dataframe tbody tr th:only-of-type {\n",
+       "        vertical-align: middle;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe tbody tr th {\n",
+       "        vertical-align: top;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe thead th {\n",
+       "        text-align: right;\n",
+       "    }\n",
+       "</style>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr style=\"text-align: right;\">\n",
+       "      <th></th>\n",
+       "      <th>Pclass</th>\n",
+       "      <th>Age</th>\n",
+       "      <th>SibSp</th>\n",
+       "      <th>Parch</th>\n",
+       "      <th>Fare</th>\n",
+       "      <th>Sex_female</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>Pclass</th>\n",
+       "      <td>1.000000</td>\n",
+       "      <td>-0.331339</td>\n",
+       "      <td>0.083081</td>\n",
+       "      <td>0.018443</td>\n",
+       "      <td>-0.549500</td>\n",
+       "      <td>-0.131900</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>Age</th>\n",
+       "      <td>-0.331339</td>\n",
+       "      <td>1.000000</td>\n",
+       "      <td>-0.232625</td>\n",
+       "      <td>-0.179191</td>\n",
+       "      <td>0.091566</td>\n",
+       "      <td>-0.084153</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>SibSp</th>\n",
+       "      <td>0.083081</td>\n",
+       "      <td>-0.232625</td>\n",
+       "      <td>1.000000</td>\n",
+       "      <td>0.414838</td>\n",
+       "      <td>0.159651</td>\n",
+       "      <td>0.114631</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>Parch</th>\n",
+       "      <td>0.018443</td>\n",
+       "      <td>-0.179191</td>\n",
+       "      <td>0.414838</td>\n",
+       "      <td>1.000000</td>\n",
+       "      <td>0.216225</td>\n",
+       "      <td>0.245489</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>Fare</th>\n",
+       "      <td>-0.549500</td>\n",
+       "      <td>0.091566</td>\n",
+       "      <td>0.159651</td>\n",
+       "      <td>0.216225</td>\n",
+       "      <td>1.000000</td>\n",
+       "      <td>0.182333</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>Sex_female</th>\n",
+       "      <td>-0.131900</td>\n",
+       "      <td>-0.084153</td>\n",
+       "      <td>0.114631</td>\n",
+       "      <td>0.245489</td>\n",
+       "      <td>0.182333</td>\n",
+       "      <td>1.000000</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "              Pclass       Age     SibSp     Parch      Fare  Sex_female\n",
+       "Pclass      1.000000 -0.331339  0.083081  0.018443 -0.549500   -0.131900\n",
+       "Age        -0.331339  1.000000 -0.232625 -0.179191  0.091566   -0.084153\n",
+       "SibSp       0.083081 -0.232625  1.000000  0.414838  0.159651    0.114631\n",
+       "Parch       0.018443 -0.179191  0.414838  1.000000  0.216225    0.245489\n",
+       "Fare       -0.549500  0.091566  0.159651  0.216225  1.000000    0.182333\n",
+       "Sex_female -0.131900 -0.084153  0.114631  0.245489  0.182333    1.000000"
+      ]
+     },
+     "execution_count": 365,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "x.corr()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 366,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,\n",
+       "          intercept_scaling=1, max_iter=100, multi_class='ovr', n_jobs=1,\n",
+       "          penalty='l2', random_state=None, solver='liblinear', tol=0.0001,\n",
+       "          verbose=0, warm_start=False)"
+      ]
+     },
+     "execution_count": 366,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "model = LogisticRegression()\n",
+    "model.fit(x_train, y_train)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 367,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "array([0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0,\n",
+       "       1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0,\n",
+       "       1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1,\n",
+       "       0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1,\n",
+       "       0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,\n",
+       "       1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0,\n",
+       "       0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1,\n",
+       "       0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0,\n",
+       "       0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0,\n",
+       "       1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0,\n",
+       "       0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1,\n",
+       "       0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0,\n",
+       "       0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,\n",
+       "       1, 0, 0, 0, 0, 0, 1, 1, 0], dtype=int64)"
+      ]
+     },
+     "execution_count": 367,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "model.predict(x_test)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 368,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "0.8101694915254237"
+      ]
+     },
+     "execution_count": 368,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "model.score(x_test, y_test)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.6.5"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
diff --git a/Titanic-answer.ipynb b/Titanic-answer.ipynb
new file mode 100644
index 0000000..533e7db
--- /dev/null
+++ b/Titanic-answer.ipynb
@@ -0,0 +1,821 @@
+{
+ "cells": [
+  {
+   "cell_type": "code",
+   "execution_count": 339,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "import numpy as np\n",
+    "import pandas as pd\n",
+    "import matplotlib.pyplot as plt\n",
+    "import statsmodels.api as sm\n",
+    "from sklearn.model_selection import train_test_split\n",
+    "from sklearn.metrics import r2_score\n",
+    "from pandas.plotting import scatter_matrix\n",
+    "from sklearn.linear_model import LogisticRegression\n",
+    "%matplotlib inline"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 340,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<style scoped>\n",
+       "    .dataframe tbody tr th:only-of-type {\n",
+       "        vertical-align: middle;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe tbody tr th {\n",
+       "        vertical-align: top;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe thead th {\n",
+       "        text-align: right;\n",
+       "    }\n",
+       "</style>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr style=\"text-align: right;\">\n",
+       "      <th></th>\n",
+       "      <th>PassengerId</th>\n",
+       "      <th>Survived</th>\n",
+       "      <th>Pclass</th>\n",
+       "      <th>Name</th>\n",
+       "      <th>Sex</th>\n",
+       "      <th>Age</th>\n",
+       "      <th>SibSp</th>\n",
+       "      <th>Parch</th>\n",
+       "      <th>Ticket</th>\n",
+       "      <th>Fare</th>\n",
+       "      <th>Cabin</th>\n",
+       "      <th>Embarked</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>0</th>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>3</td>\n",
+       "      <td>Braund, Mr. Owen Harris</td>\n",
+       "      <td>male</td>\n",
+       "      <td>22.0</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>A/5 21171</td>\n",
+       "      <td>7.2500</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>S</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>1</th>\n",
+       "      <td>2</td>\n",
+       "      <td>1</td>\n",
+       "      <td>1</td>\n",
+       "      <td>Cumings, Mrs. John Bradley (Florence Briggs Th...</td>\n",
+       "      <td>female</td>\n",
+       "      <td>38.0</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>PC 17599</td>\n",
+       "      <td>71.2833</td>\n",
+       "      <td>C85</td>\n",
+       "      <td>C</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2</th>\n",
+       "      <td>3</td>\n",
+       "      <td>1</td>\n",
+       "      <td>3</td>\n",
+       "      <td>Heikkinen, Miss. Laina</td>\n",
+       "      <td>female</td>\n",
+       "      <td>26.0</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0</td>\n",
+       "      <td>STON/O2. 3101282</td>\n",
+       "      <td>7.9250</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>S</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>3</th>\n",
+       "      <td>4</td>\n",
+       "      <td>1</td>\n",
+       "      <td>1</td>\n",
+       "      <td>Futrelle, Mrs. Jacques Heath (Lily May Peel)</td>\n",
+       "      <td>female</td>\n",
+       "      <td>35.0</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>113803</td>\n",
+       "      <td>53.1000</td>\n",
+       "      <td>C123</td>\n",
+       "      <td>S</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>4</th>\n",
+       "      <td>5</td>\n",
+       "      <td>0</td>\n",
+       "      <td>3</td>\n",
+       "      <td>Allen, Mr. William Henry</td>\n",
+       "      <td>male</td>\n",
+       "      <td>35.0</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0</td>\n",
+       "      <td>373450</td>\n",
+       "      <td>8.0500</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>S</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "   PassengerId  Survived  Pclass  \\\n",
+       "0            1         0       3   \n",
+       "1            2         1       1   \n",
+       "2            3         1       3   \n",
+       "3            4         1       1   \n",
+       "4            5         0       3   \n",
+       "\n",
+       "                                                Name     Sex   Age  SibSp  \\\n",
+       "0                            Braund, Mr. Owen Harris    male  22.0      1   \n",
+       "1  Cumings, Mrs. John Bradley (Florence Briggs Th...  female  38.0      1   \n",
+       "2                             Heikkinen, Miss. Laina  female  26.0      0   \n",
+       "3       Futrelle, Mrs. Jacques Heath (Lily May Peel)  female  35.0      1   \n",
+       "4                           Allen, Mr. William Henry    male  35.0      0   \n",
+       "\n",
+       "   Parch            Ticket     Fare Cabin Embarked  \n",
+       "0      0         A/5 21171   7.2500   NaN        S  \n",
+       "1      0          PC 17599  71.2833   C85        C  \n",
+       "2      0  STON/O2. 3101282   7.9250   NaN        S  \n",
+       "3      0            113803  53.1000  C123        S  \n",
+       "4      0            373450   8.0500   NaN        S  "
+      ]
+     },
+     "execution_count": 340,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "df = pd.read_csv('train.csv')\n",
+    "df.head()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 341,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "<class 'pandas.core.frame.DataFrame'>\n",
+      "RangeIndex: 891 entries, 0 to 890\n",
+      "Data columns (total 12 columns):\n",
+      "PassengerId    891 non-null int64\n",
+      "Survived       891 non-null int64\n",
+      "Pclass         891 non-null int64\n",
+      "Name           891 non-null object\n",
+      "Sex            891 non-null object\n",
+      "Age            714 non-null float64\n",
+      "SibSp          891 non-null int64\n",
+      "Parch          891 non-null int64\n",
+      "Ticket         891 non-null object\n",
+      "Fare           891 non-null float64\n",
+      "Cabin          204 non-null object\n",
+      "Embarked       889 non-null object\n",
+      "dtypes: float64(2), int64(5), object(5)\n",
+      "memory usage: 83.6+ KB\n"
+     ]
+    }
+   ],
+   "source": [
+    "df.info()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 342,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "0    0\n",
+       "1    1\n",
+       "2    1\n",
+       "3    1\n",
+       "4    0\n",
+       "Name: Survived, dtype: int64"
+      ]
+     },
+     "execution_count": 342,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "y = df.Survived\n",
+    "y.head()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 343,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<style scoped>\n",
+       "    .dataframe tbody tr th:only-of-type {\n",
+       "        vertical-align: middle;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe tbody tr th {\n",
+       "        vertical-align: top;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe thead th {\n",
+       "        text-align: right;\n",
+       "    }\n",
+       "</style>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr style=\"text-align: right;\">\n",
+       "      <th></th>\n",
+       "      <th>PassengerId</th>\n",
+       "      <th>Survived</th>\n",
+       "      <th>Pclass</th>\n",
+       "      <th>Name</th>\n",
+       "      <th>Sex</th>\n",
+       "      <th>Age</th>\n",
+       "      <th>SibSp</th>\n",
+       "      <th>Parch</th>\n",
+       "      <th>Ticket</th>\n",
+       "      <th>Fare</th>\n",
+       "      <th>Cabin</th>\n",
+       "      <th>Embarked</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>0</th>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>3</td>\n",
+       "      <td>Braund, Mr. Owen Harris</td>\n",
+       "      <td>male</td>\n",
+       "      <td>22.0</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>A/5 21171</td>\n",
+       "      <td>7.2500</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>S</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>1</th>\n",
+       "      <td>2</td>\n",
+       "      <td>1</td>\n",
+       "      <td>1</td>\n",
+       "      <td>Cumings, Mrs. John Bradley (Florence Briggs Th...</td>\n",
+       "      <td>female</td>\n",
+       "      <td>38.0</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>PC 17599</td>\n",
+       "      <td>71.2833</td>\n",
+       "      <td>C85</td>\n",
+       "      <td>C</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2</th>\n",
+       "      <td>3</td>\n",
+       "      <td>1</td>\n",
+       "      <td>3</td>\n",
+       "      <td>Heikkinen, Miss. Laina</td>\n",
+       "      <td>female</td>\n",
+       "      <td>26.0</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0</td>\n",
+       "      <td>STON/O2. 3101282</td>\n",
+       "      <td>7.9250</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>S</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>3</th>\n",
+       "      <td>4</td>\n",
+       "      <td>1</td>\n",
+       "      <td>1</td>\n",
+       "      <td>Futrelle, Mrs. Jacques Heath (Lily May Peel)</td>\n",
+       "      <td>female</td>\n",
+       "      <td>35.0</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>113803</td>\n",
+       "      <td>53.1000</td>\n",
+       "      <td>C123</td>\n",
+       "      <td>S</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>4</th>\n",
+       "      <td>5</td>\n",
+       "      <td>0</td>\n",
+       "      <td>3</td>\n",
+       "      <td>Allen, Mr. William Henry</td>\n",
+       "      <td>male</td>\n",
+       "      <td>35.0</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0</td>\n",
+       "      <td>373450</td>\n",
+       "      <td>8.0500</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>S</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "   PassengerId  Survived  Pclass  \\\n",
+       "0            1         0       3   \n",
+       "1            2         1       1   \n",
+       "2            3         1       3   \n",
+       "3            4         1       1   \n",
+       "4            5         0       3   \n",
+       "\n",
+       "                                                Name     Sex   Age  SibSp  \\\n",
+       "0                            Braund, Mr. Owen Harris    male  22.0      1   \n",
+       "1  Cumings, Mrs. John Bradley (Florence Briggs Th...  female  38.0      1   \n",
+       "2                             Heikkinen, Miss. Laina  female  26.0      0   \n",
+       "3       Futrelle, Mrs. Jacques Heath (Lily May Peel)  female  35.0      1   \n",
+       "4                           Allen, Mr. William Henry    male  35.0      0   \n",
+       "\n",
+       "   Parch            Ticket     Fare Cabin Embarked  \n",
+       "0      0         A/5 21171   7.2500   NaN        S  \n",
+       "1      0          PC 17599  71.2833   C85        C  \n",
+       "2      0  STON/O2. 3101282   7.9250   NaN        S  \n",
+       "3      0            113803  53.1000  C123        S  \n",
+       "4      0            373450   8.0500   NaN        S  "
+      ]
+     },
+     "execution_count": 343,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "df[df.Age.isna()]\n",
+    "df.head()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 344,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "Age_mean = df.Age.mean()\n",
+    "df['Age'] = df.Age.fillna(Age_mean)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 345,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "<class 'pandas.core.frame.DataFrame'>\n",
+      "RangeIndex: 891 entries, 0 to 890\n",
+      "Data columns (total 12 columns):\n",
+      "PassengerId    891 non-null int64\n",
+      "Survived       891 non-null int64\n",
+      "Pclass         891 non-null int64\n",
+      "Name           891 non-null object\n",
+      "Sex            891 non-null object\n",
+      "Age            891 non-null float64\n",
+      "SibSp          891 non-null int64\n",
+      "Parch          891 non-null int64\n",
+      "Ticket         891 non-null object\n",
+      "Fare           891 non-null float64\n",
+      "Cabin          204 non-null object\n",
+      "Embarked       889 non-null object\n",
+      "dtypes: float64(2), int64(5), object(5)\n",
+      "memory usage: 83.6+ KB\n"
+     ]
+    }
+   ],
+   "source": [
+    "df.info()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 361,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "<class 'pandas.core.frame.DataFrame'>\n",
+      "RangeIndex: 891 entries, 0 to 890\n",
+      "Data columns (total 6 columns):\n",
+      "Pclass    891 non-null int64\n",
+      "Sex       891 non-null object\n",
+      "Age       891 non-null float64\n",
+      "SibSp     891 non-null int64\n",
+      "Parch     891 non-null int64\n",
+      "Fare      891 non-null float64\n",
+      "dtypes: float64(2), int64(3), object(1)\n",
+      "memory usage: 41.8+ KB\n"
+     ]
+    }
+   ],
+   "source": [
+    "x = df.drop(columns=['Survived', 'Cabin', 'PassengerId', 'Name','Embarked', 'Ticket'])\n",
+    "x.head()\n",
+    "x.info()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 362,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<style scoped>\n",
+       "    .dataframe tbody tr th:only-of-type {\n",
+       "        vertical-align: middle;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe tbody tr th {\n",
+       "        vertical-align: top;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe thead th {\n",
+       "        text-align: right;\n",
+       "    }\n",
+       "</style>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr style=\"text-align: right;\">\n",
+       "      <th></th>\n",
+       "      <th>Pclass</th>\n",
+       "      <th>Age</th>\n",
+       "      <th>SibSp</th>\n",
+       "      <th>Parch</th>\n",
+       "      <th>Fare</th>\n",
+       "      <th>Sex_female</th>\n",
+       "      <th>Sex_male</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>0</th>\n",
+       "      <td>3</td>\n",
+       "      <td>22.0</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>7.2500</td>\n",
+       "      <td>0</td>\n",
+       "      <td>1</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>1</th>\n",
+       "      <td>1</td>\n",
+       "      <td>38.0</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>71.2833</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2</th>\n",
+       "      <td>3</td>\n",
+       "      <td>26.0</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0</td>\n",
+       "      <td>7.9250</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>3</th>\n",
+       "      <td>1</td>\n",
+       "      <td>35.0</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>53.1000</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>4</th>\n",
+       "      <td>3</td>\n",
+       "      <td>35.0</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0</td>\n",
+       "      <td>8.0500</td>\n",
+       "      <td>0</td>\n",
+       "      <td>1</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "   Pclass   Age  SibSp  Parch     Fare  Sex_female  Sex_male\n",
+       "0       3  22.0      1      0   7.2500           0         1\n",
+       "1       1  38.0      1      0  71.2833           1         0\n",
+       "2       3  26.0      0      0   7.9250           1         0\n",
+       "3       1  35.0      1      0  53.1000           1         0\n",
+       "4       3  35.0      0      0   8.0500           0         1"
+      ]
+     },
+     "execution_count": 362,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "x = pd.get_dummies(x)\n",
+    "x.head()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 363,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "x = x.drop(columns=['Sex_male'])"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 364,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "((596, 6), (295, 6))"
+      ]
+     },
+     "execution_count": 364,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.33, random_state=42)\n",
+    "x_train.shape, x_test.shape"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 365,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<style scoped>\n",
+       "    .dataframe tbody tr th:only-of-type {\n",
+       "        vertical-align: middle;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe tbody tr th {\n",
+       "        vertical-align: top;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe thead th {\n",
+       "        text-align: right;\n",
+       "    }\n",
+       "</style>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr style=\"text-align: right;\">\n",
+       "      <th></th>\n",
+       "      <th>Pclass</th>\n",
+       "      <th>Age</th>\n",
+       "      <th>SibSp</th>\n",
+       "      <th>Parch</th>\n",
+       "      <th>Fare</th>\n",
+       "      <th>Sex_female</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>Pclass</th>\n",
+       "      <td>1.000000</td>\n",
+       "      <td>-0.331339</td>\n",
+       "      <td>0.083081</td>\n",
+       "      <td>0.018443</td>\n",
+       "      <td>-0.549500</td>\n",
+       "      <td>-0.131900</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>Age</th>\n",
+       "      <td>-0.331339</td>\n",
+       "      <td>1.000000</td>\n",
+       "      <td>-0.232625</td>\n",
+       "      <td>-0.179191</td>\n",
+       "      <td>0.091566</td>\n",
+       "      <td>-0.084153</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>SibSp</th>\n",
+       "      <td>0.083081</td>\n",
+       "      <td>-0.232625</td>\n",
+       "      <td>1.000000</td>\n",
+       "      <td>0.414838</td>\n",
+       "      <td>0.159651</td>\n",
+       "      <td>0.114631</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>Parch</th>\n",
+       "      <td>0.018443</td>\n",
+       "      <td>-0.179191</td>\n",
+       "      <td>0.414838</td>\n",
+       "      <td>1.000000</td>\n",
+       "      <td>0.216225</td>\n",
+       "      <td>0.245489</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>Fare</th>\n",
+       "      <td>-0.549500</td>\n",
+       "      <td>0.091566</td>\n",
+       "      <td>0.159651</td>\n",
+       "      <td>0.216225</td>\n",
+       "      <td>1.000000</td>\n",
+       "      <td>0.182333</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>Sex_female</th>\n",
+       "      <td>-0.131900</td>\n",
+       "      <td>-0.084153</td>\n",
+       "      <td>0.114631</td>\n",
+       "      <td>0.245489</td>\n",
+       "      <td>0.182333</td>\n",
+       "      <td>1.000000</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "              Pclass       Age     SibSp     Parch      Fare  Sex_female\n",
+       "Pclass      1.000000 -0.331339  0.083081  0.018443 -0.549500   -0.131900\n",
+       "Age        -0.331339  1.000000 -0.232625 -0.179191  0.091566   -0.084153\n",
+       "SibSp       0.083081 -0.232625  1.000000  0.414838  0.159651    0.114631\n",
+       "Parch       0.018443 -0.179191  0.414838  1.000000  0.216225    0.245489\n",
+       "Fare       -0.549500  0.091566  0.159651  0.216225  1.000000    0.182333\n",
+       "Sex_female -0.131900 -0.084153  0.114631  0.245489  0.182333    1.000000"
+      ]
+     },
+     "execution_count": 365,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "x.corr()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 366,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,\n",
+       "          intercept_scaling=1, max_iter=100, multi_class='ovr', n_jobs=1,\n",
+       "          penalty='l2', random_state=None, solver='liblinear', tol=0.0001,\n",
+       "          verbose=0, warm_start=False)"
+      ]
+     },
+     "execution_count": 366,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "model = LogisticRegression()\n",
+    "model.fit(x_train, y_train)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 367,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "array([0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0,\n",
+       "       1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0,\n",
+       "       1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1,\n",
+       "       0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1,\n",
+       "       0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,\n",
+       "       1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0,\n",
+       "       0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1,\n",
+       "       0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0,\n",
+       "       0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0,\n",
+       "       1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0,\n",
+       "       0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1,\n",
+       "       0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0,\n",
+       "       0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,\n",
+       "       1, 0, 0, 0, 0, 0, 1, 1, 0], dtype=int64)"
+      ]
+     },
+     "execution_count": 367,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "model.predict(x_test)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 368,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "0.8101694915254237"
+      ]
+     },
+     "execution_count": 368,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "model.score(x_test, y_test)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.6.5"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}