-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_utils.py
579 lines (480 loc) · 21.7 KB
/
train_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
from PrepareData import prepare_data
import torch
from torch import nn, optim, Tensor
from torch.nn import functional as F
import pickle
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import rdkit
from rdkit import Chem
from rdkit.Chem import AllChem
from rdkit.Chem import Draw
import seaborn as sns
from architecture import CLIP
from tqdm import tqdm
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
dtype = torch.float32
import os
import yaml
import wandb
import time
def freeze_molecule_encoder(model):
for name, param in model.named_parameters():
if "Molecule_Encoder" in name:
param.requires_grad = False
print(name, param.requires_grad)
def unfreeze_molecule_encoder(model):
for name, param in model.named_parameters():
if "Molecule_Encoder" in name:
param.requires_grad = True
print(name, param.requires_grad)
def freeze_spectra_encoder(model):
for name, param in model.named_parameters():
if "Spectra_Encoder" in name:
param.requires_grad = False
print(name, param.requires_grad)
def unfreeze_spectra_encoder(model):
for name, param in model.named_parameters():
if "Spectra_Encoder" in name:
param.requires_grad = True
print(name, param.requires_grad)
def freeze_smiles_decoder(model):
for name, param in model.named_parameters():
if "smiles_decoder" in name:
param.requires_grad = False
print(name, param.requires_grad)
def unfreeze_smiles_decoder(model):
for name, param in model.named_parameters():
if "smiles_decoder" in name:
param.requires_grad = True
print(name, param.requires_grad)
def nt_xent_loss(out_1, out_2, temperature):
out = torch.cat([out_1, out_2], dim=0)
n_samples = len(out)
# Full similarity matrix
cov = torch.mm(out, out.t().contiguous())
sim = torch.exp(cov / temperature)
mask = ~torch.eye(n_samples, device=sim.device).bool()
neg = sim.masked_select(mask).view(n_samples, -1).sum(dim=-1)
# Positive similarity
pos = torch.exp(torch.sum(out_1 * out_2, dim=-1) / temperature)
pos = torch.cat([pos, pos], dim=0)
loss = -torch.log(pos / neg).mean()
return loss
class CombinedLoss(nn.Module):
# under construction
def __init__(self, vocab, temperature=1, threshold=0.8, type="default"):
super().__init__()
self.temperature = temperature
self.threshold = threshold
self.vocab = vocab
self.type = type
def forward(self, mol_features, spectra_features, logit_scale, smile_ypred, data):
# spectra = spectra.squeeze(1)
# spectra = spectra.squeeze(1)
# print(logit_scale)
# print(mol_features.shape)
# print(spectra_features.shape)
if self.type == "nt_xent":
clip_loss = nt_xent_loss(mol_features, spectra_features, self.temperature)
elif self.type == "default":
logits = logit_scale[0] * mol_features @ spectra_features.t()
targets = torch.diag(torch.ones(spectra_features.shape[0])).to(device)
clip_loss = (F.cross_entropy(logits, targets) +
F.cross_entropy(logits.t(), targets.t())
) / 2
smile_y = data['smiles'].to(device)[:,1:]
smile_yprob = F.log_softmax(smile_ypred, dim=2)
# reconstruction_loss = F.nll_loss(smile_yprob.view(-1, len(self.vocab)),
# smile_y.view(-1))
reconstruction_loss = F.cross_entropy(smile_ypred.view(-1, len(self.vocab)),
smile_y.contiguous().view(-1))
total_loss = clip_loss + reconstruction_loss
return total_loss, clip_loss, reconstruction_loss
def train_one_epoch( config, model, dataloader, epoch, optimizer, loss_fn, focus="clip_loss"):
running_loss = []
model.to(device)
model.train()
max_charge = config['data']['max_charge']
num_species = config['data']['num_species']
for i, data in enumerate(dataloader):
optimizer.zero_grad()
data = {k: v.to(device) for k, v in data.items()}
mol_latents, spec_latents, smile_preds, logit_scale, ids = model(data)
total_loss, clip_loss, reconstruction_loss = loss_fn(mol_latents, spec_latents, logit_scale, smile_preds, data)
if focus == "total_loss":
total_loss.backward()
elif focus == "clip_loss":
clip_loss.backward()
elif focus == "reconstruction_loss":
reconstruction_loss.backward()
optimizer.step()
nn.utils.clip_grad_value_(model.parameters(), clip_value=1.0)
print( 'Training Epoch: {} | iteration: {}/{} | Loss: {}'.format(epoch, i, len(dataloader), total_loss.item() ), end='\r')
running_loss.append([total_loss.detach().item(), clip_loss.detach().item(), reconstruction_loss.detach().item()])
del total_loss, clip_loss, reconstruction_loss, mol_latents, spec_latents, smile_preds, logit_scale
running_loss = np.array(running_loss)
return np.mean(running_loss, axis= 0)
def validate(config, model, dataloader, epoch, optimizer, loss_fn):
running_loss = []
# model.to(device)
model.eval()
max_charge = config['data']['max_charge']
num_species = config['data']['num_species']
with torch.no_grad():
for i, data in enumerate(dataloader):
data = {k: v.to(device) for k, v in data.items()}
mol_latents, spec_latents, smile_preds, logit_scale, ids = model(data)
total_loss, clip_loss, reconstruction_loss = loss_fn(mol_latents, spec_latents, logit_scale, smile_preds, data)
print( 'Validation Epoch: {} | iteration: {}/{} | Loss: {}'.format(epoch, i, len(dataloader), total_loss.detach().item() ), end='\r')
running_loss.append([total_loss.detach().item(), clip_loss.detach().item(), reconstruction_loss.detach().item()])
del total_loss, clip_loss, reconstruction_loss, mol_latents, spec_latents, smile_preds, logit_scale
running_loss = np.array(running_loss)
plt.clf()
df = pd.DataFrame(running_loss, columns=['ttl_loss', 'clip_loss', 'recon_loss'])
plot = sns.histplot(df, kde=True, bins=50)
wandb.log({"Validation Loss Distribution":wandb.Image(plot)}, step=epoch)
plt.clf()
del plot
model.train()
return np.mean(running_loss, axis = 0)
def save_model(model, config, logs, name):
path_dir = config['train']['checkpoint_dir']
if not os.path.exists(path_dir):
os.mkdir(path_dir)
model_path = path_dir + '/' + name + '.pth'
config_path = path_dir + '/config.yaml'
logs_path = path_dir + '/logs.pickle'
torch.save(model.state_dict(), model_path)
with open(config_path,'w') as yaml_file:
yaml.dump(dict(config), yaml_file)
with open(logs_path, 'wb') as file:
pickle.dump(logs, file)
print("Saved to {}".format(path_dir))
def load_model(path_to_dir, type="best_total"):
files = os.listdir(path_to_dir)
for file in files:
if type +'.pth' in file:
model_path = path_to_dir + '/' + file
if '.yaml' in file:
config_path = path_to_dir + '/' + file
with open(config_path,'r') as f:
config = yaml.full_load(f)
model = CLIP(config)
model.to(device)
model = torch.nn.parallel.DataParallel(model)
model.load_state_dict(torch.load(model_path))
return model
def update_logs_and_checkpoints(config, model, tl, vl, epoch, logs):
logs['train_total_loss'].append(tl[0])
logs['train_clip_loss'].append(tl[1])
logs['train_recon_loss'].append(tl[2])
logs['val_total_loss'].append(vl[0])
logs['val_clip_loss'].append(vl[1])
logs['val_recon_loss'].append(vl[2])
if vl[0] < logs['best_total_loss']:
logs['best_total_loss'] = vl[0]
logs['best_epoch'] = epoch
save_model(model, config, logs, 'best_total')
if vl[1] < logs['best_clip_loss']:
logs['best_clip_loss'] = vl[1]
logs['best_clip_epoch'] = epoch
save_model(model, config, logs, 'best_clip')
if vl[2] < logs['best_recon_loss']:
logs['best_recon_loss'] = vl[2]
logs['best_recon_epoch'] = epoch
save_model(model, config, logs, 'best_recon')
save_model(model, config, logs, 'best_latest')
# for key in logs:
# if not isinstance(logs[key], list):
# wandb.log({key:logs[key]}, step=epoch)
return logs
def print_status(logs, time=None):
train_total_loss = logs['train_total_loss'][-1]
val_total_loss = logs['train_total_loss'][-1]
print("Latest Train_Loss: {}, Latest Val_Loss: {}".format( train_total_loss, val_total_loss))
print("Best Test_Loss: {}, Best Epoch: {}".format( logs['best_total_loss'],logs['best_epoch']))
print("=============== Time: {}========================".format(time))
def train_clip(config, model, dataloaders, optimizer, loss_fn, logs, start=0, num_epochs=50 ):
for epoch in range(start,num_epochs):
start = time.time()
tl = train_one_epoch(config, model, dataloaders['train'], epoch, optimizer, loss_fn , focus="clip_loss")
vl = validate(config, model, dataloaders['val'], epoch, optimizer, loss_fn )
logs = update_logs_and_checkpoints(config, model, tl, vl, epoch, logs)
end = time.time()
wandb.log(
{
'epoch': epoch,
'train_total_loss':tl[0],
'train_clip_loss':tl[1],
'train_recon_loss':tl[2],
'val_total_loss':vl[0],
'val_clip_loss':vl[1],
'val_recon_loss':vl[2],
},
step = epoch
)
if epoch % 50 == 0:
clip_performance(config, model, dataloaders, epoch)
elif epoch > 450 and epoch % 10 == 0:
clip_performance(config, model, dataloaders, epoch)
print_status(logs, end-start)
return logs
def train_recon(config, model, dataloaders, optimizer, loss_fn, logs, start=0, num_epochs=50 ):
for epoch in range(start, num_epochs):
start = time.time()
tl = train_one_epoch(config, model, dataloaders['train'], epoch, optimizer, loss_fn , focus="reconstruction_loss")
vl = validate(config, model, dataloaders['val'], epoch, optimizer, loss_fn )
logs = update_logs_and_checkpoints(config, model, tl, vl, epoch, logs)
end = time.time()
wandb.log(
{
'epoch': epoch,
'train_total_loss':tl[0],
'train_clip_loss':tl[1],
'train_recon_loss':tl[2],
'val_total_loss':vl[0],
'val_clip_loss':vl[1],
'val_recon_loss':vl[2],
},
step = epoch
)
if epoch % 50 == 0:
clip_performance(config, model, dataloaders, epoch)
elif epoch > 450 and epoch % 10 == 0:
clip_performance(config, model, dataloaders, epoch)
print_status(logs, end-start)
return logs
def train_total(config, model, dataloaders, optimizer, loss_fn, logs, start=0, num_epochs=50 ):
for epoch in range(start, num_epochs):
start = time.time()
tl = train_one_epoch(config, model, dataloaders['train'], epoch, optimizer, loss_fn , focus="total_loss")
vl = validate(config, model, dataloaders['val'], epoch, optimizer, loss_fn )
logs = update_logs_and_checkpoints(config, model, tl, vl, epoch, logs)
end = time.time()
wandb.log(
{
'epoch': epoch,
'train_total_loss':tl[0],
'train_clip_loss':tl[1],
'train_recon_loss':tl[2],
'val_total_loss':vl[0],
'val_clip_loss':vl[1],
'val_recon_loss':vl[2],
},
step = epoch
)
if epoch % 50 == 0:
clip_performance(config, model, dataloaders, epoch)
elif epoch > 450 and epoch % 10 == 0:
clip_performance(config, model, dataloaders, epoch)
print_status(logs, end-start)
return logs
def top_scores(mat1, mat2):
"""
mat1 is the first mat
mat2 is the second mat
d = []
for i in mat1:
for j in mat2:
closest between i and j
d.append(rank)
"""
hits = []
tops = [1,2,3,4,5, 7, 10]
score = [0] * (len(tops))
for i in range(mat1.shape[0]):
sims = mat2 @ mat1[i].t()
for k in range(len(tops)):
max_sims, ids = torch.topk(sims, tops[k])
if (i) in ids:
score[k] += 1
for i in range(len(tops)):
score[i] = score[i] / mat1.shape[0]
return np.array(tops), np.array(score ) * 100
# %matplotlib inline
def distance_distribution(molmat, specmat):
sims = molmat @ specmat.t()
diagonals = torch.diagonal(sims, 0).cpu().numpy()
sims = np.random.choice(sims.view(-1).cpu().numpy(), len(diagonals))
vals = np.concatenate((sims, diagonals), axis=0)
pairs = ["pairs"] * len(diagonals)
nonpairs = ["others"] * len(sims)
df = pd.DataFrame()
df['distance'] = vals
df['labels'] = nonpairs + pairs
plt.clf()
plot = sns.histplot(df, x='distance', hue='labels', kde=True, bins=50)
del sims, diagonals, vals, df
return plot
def distance_mat(molmat, specmat):
sims = specmat[:1000].cpu() @ molmat.t()[:,:1000].cpu()
plt.clf()
img = sns.heatmap(data=sims, annot=None)
del sims
return img
PAD = 0
UNK = 1
EOS = 2
SOS = 3
MASK = 4
class Sampler():
def __init__(self, model, vocab):
self.model = model
self.vocab = vocab
self.max_len = 40
def sample(self, embed, greedy_decode=False):
embed = embed.unsqueeze(0).to(device)
self.model.eval()
sample_tensor = torch.zeros((1,self.max_len), dtype=torch.int64).to(device)
sample_tensor[0,0] = SOS
with torch.no_grad():
for i in range(0,self.max_len-1):
tensor = sample_tensor[:,:i+1]
logits = self.model.forward(embed, tensor)[:,-1,:]
probabilities = F.softmax(logits, dim=1)
sampled_char = torch.multinomial(probabilities,1).item()
if greedy_decode:
sampled_char = torch.argmax(probabilities)
sample_tensor[0,i+1] = sampled_char
if sampled_char == EOS:
break
smiles = ""
chars = self.vocab.from_seq(sample_tensor[0])
for char in chars:
if char != "<pad>" and char != "<eos>" and char != "<sos>" and char != "<unk>":
smiles += char
return smiles
def sample_multi(self, n, embed, greedy_decode=False):
smiles_list = []
for i in range(n):
smiles_list.append(self.sample(embed, greedy_decode))
return smiles_list
from rdkit import Chem
from rdkit.Chem import RDConfig
from rdkit.Chem import AllChem
from rdkit.Chem import Draw
from rdkit.Chem.Draw import rdDepictor, rdMolDraw2D
opts = Draw.DrawingOptions()
Draw.SetComicMode(opts)
def calculate_decoder_accuracy( model, dataloaders, k=1):
with torch.no_grad():
pred_smiles_list = []
og_smiles_list = []
count = 0
sampler = Sampler(model.module.smiles_decoder, model.module.vocab)
for i, data in tqdm(enumerate(dataloaders['val'])):
data = {k: v.to(device) for k, v in data.items()}
spec_latents = model.module.forward_spec(data)
for spec, og in zip(spec_latents, data['smiles'] ):
ls = sampler.sample_multi(k,spec,greedy_decode=True)
generated_smiles = []
for smi in ls:
try:
generated_smiles.append(Chem.CanonSmiles(smi))
except:
pass
og_smile = ""
chars = model.module.vocab.from_seq(og)
for char in chars:
if char != "<pad>" and char != "<eos>" and char != "<sos>" and char != "<unk>":
og_smile += char
try:
og_smile = Chem.CanonSmiles(og_smile)
except:
og_smile=None
if og_smile is not None and og_smile in generated_smiles:
count += 1
og_smiles_list.append(og_smile)
pred_smiles_list.append(generated_smiles)
print("No of Hits : ",count / len(og_smiles_list))
return count / len(og_smiles_list)
def decoder_performance(config, model, dataloaders, epoch):
with torch.no_grad():
for i, data in enumerate(dataloaders["val"]):
data = {k: v.to(device) for k, v in data.items()}
break
spec_latent = model.module.forward_spec(data)
one_hot = data['smiles'].to(device)
arr = np.array([])
vocab = pickle.load(open(config['data']['vocab_path'], 'rb'))
for i in range(4) :
index = torch.randint(0,spec_latent.shape[0], (1,))[0].item()
sampler = Sampler(model.module.smiles_decoder, model.module.vocab)
smiles_list = sampler.sample_multi(10, spec_latent[index])
parsed_mols = np.array([Chem.MolFromSmiles(s) for s in smiles_list])
print("Percentage invalid", (parsed_mols == None).sum()/len(parsed_mols))
og_smiles = ""
chars = model.module.vocab.from_seq(one_hot[index])
for char in chars:
if char != "<pad>" and char != "<eos>" and char != "<sos>" and char != "<unk>":
og_smiles += char
og_mol = Chem.MolFromSmiles(og_smiles)
all_mols = np.array([og_mol] + list(parsed_mols))
arr = np.concatenate((arr, all_mols), axis=0)
img = Draw.MolsToGridImage(arr, molsPerRow=11, returnPNG=False)
wandb.log({"Spectra Conditioned smiles decoding": wandb.Image(img)}, step=epoch)
index = torch.randint(0,spec_latent.shape[0], (1,))[0].item()
sampler = Sampler(model.module.smiles_decoder, vocab)
smiles_list = sampler.sample_multi(100, spec_latent[index])
parsed_mols = np.array([Chem.MolFromSmiles(s) for s in smiles_list])
print("Percentage invalid", (parsed_mols == None).sum()/len(parsed_mols))
print("==============================")
wandb.log({"Invalid Molecules percentage": (parsed_mols == None).sum()/len(parsed_mols)}, step=epoch)
return img
def clip_performance(config, model, dataloaders, epoch):
# model.to(device)
model.eval()
with torch.no_grad():
plt.clf()
img = decoder_performance(config, model, dataloaders, epoch)
plt.clf()
max_charge = config['data']['max_charge']
num_species = config['data']['num_species']
molembeds = []
specembeds = []
val_ids = []
for i, data in tqdm(enumerate(dataloaders['val'])):
data = {k: v.to(device) for k, v in data.items()}
mol_latents, spec_latents, smile_preds, logit_scale, ids = model(data)
molembeds.append(mol_latents.detach().cpu())
specembeds.append(spec_latents.detach().cpu())
val_ids.append(ids.detach().cpu())
del mol_latents, spec_latents, smile_preds, logit_scale, ids
test_molembeds = torch.cat(molembeds, 0)
test_specembeds = torch.cat(specembeds, 0)
val_ids = torch.cat(val_ids, 0)
pickle.dump(val_ids, open(config['train']['checkpoint_dir'] + '/val_ids.pickle', 'wb'))
molembeds = []
specembeds = []
for i, data in tqdm(enumerate(dataloaders['train'])):
data = {k: v.to(device) for k, v in data.items()}
mol_latents, spec_latents, smile_preds, logit_scale, ids = model(data)
molembeds.append(mol_latents.detach().cpu())
# specembeds.append(spec_latents.detach().cpu())
del mol_latents, spec_latents, smile_preds, logit_scale, ids
train_molembeds = torch.cat(molembeds, 0)
# train_specembeds = torch.cat(specembeds, 0)
all_molembeds = torch.cat(( test_molembeds, train_molembeds), axis = 0)
del train_molembeds
tops, scores = top_scores(test_specembeds, all_molembeds)
del all_molembeds
for k, acc in zip(tops, scores):
# print("Full Top {} Spec".format(k), acc)
wandb.log({"Full Top {} Spec".format(k): acc}, step=epoch)
tops, scores = top_scores(test_specembeds, test_molembeds )
for k, acc in zip(tops, scores):
# print("Test Top {} Spec".format(k), acc)
wandb.log({"Test Top {} Spec".format(k): acc}, step=epoch)
# wandb.log({'Distance Distribution Train': distance_distribution(train_molembeds, train_specembeds)}, step=epoch)
# del train_molembeds, train_specembeds
# print("===================================================================================","HERE", decoder_acc, decoder_validity,)
wandb.log({
'Distance Distribution Test': wandb.Image(distance_distribution(test_molembeds, test_specembeds)),
'Similarity Matrix Test':wandb.Image(distance_mat(test_specembeds, test_molembeds)),
'Decoding Accuracy': calculate_decoder_accuracy(model, dataloaders,k=1)
}, step=epoch)
del test_molembeds, test_specembeds
model.train()
plt.clf()