Skip to content

Commit c363fcb

Browse files
authored
Update internet speeds example (#129)
1 parent 3c0f767 commit c363fcb

File tree

1 file changed

+234
-38
lines changed

1 file changed

+234
-38
lines changed

examples/internet-speeds.ipynb

Lines changed: 234 additions & 38 deletions
Original file line numberDiff line numberDiff line change
@@ -33,7 +33,7 @@
3333
"import shapely\n",
3434
"from palettable.colorbrewer.diverging import BrBG_10\n",
3535
"\n",
36-
"from lonboard import ScatterplotLayer\n",
36+
"from lonboard import ScatterplotLayer, viz\n",
3737
"from lonboard.colormap import apply_continuous_cmap"
3838
]
3939
},
@@ -211,38 +211,234 @@
211211
},
212212
{
213213
"cell_type": "markdown",
214-
"id": "63537833-887d-4d40-acd2-8e212dc0412c",
214+
"id": "65436a4a-c498-4f40-ba79-1082062376bf",
215215
"metadata": {},
216216
"source": [
217-
"This is all we need to get data onto the map! Let's render a simple `ScatterplotLayer`, drawing each point as blue:"
217+
"To ensure that this demo is snappy on most computers, we'll filter to a bounding box over Europe."
218218
]
219219
},
220220
{
221221
"cell_type": "code",
222222
"execution_count": 8,
223-
"id": "498d466e-0f9f-497a-b4b7-8e274dffd9cf",
223+
"id": "80326895-70ba-4f4b-a7b3-106b4bbd36d9",
224+
"metadata": {},
225+
"outputs": [],
226+
"source": [
227+
"gdf = gdf.cx[-11.83:25.5, 34.9:59]"
228+
]
229+
},
230+
{
231+
"cell_type": "markdown",
232+
"id": "3cc2215e-7706-4ab3-b674-3de4ca41899c",
233+
"metadata": {},
234+
"source": [
235+
"Even this filtered data frame still has 800,000 rows, so it's still a lot of data to explore:"
236+
]
237+
},
238+
{
239+
"cell_type": "code",
240+
"execution_count": 9,
241+
"id": "a34a6a27-0259-4da9-94c4-923466da05fb",
242+
"metadata": {},
243+
"outputs": [
244+
{
245+
"data": {
246+
"text/html": [
247+
"<div>\n",
248+
"<style scoped>\n",
249+
" .dataframe tbody tr th:only-of-type {\n",
250+
" vertical-align: middle;\n",
251+
" }\n",
252+
"\n",
253+
" .dataframe tbody tr th {\n",
254+
" vertical-align: top;\n",
255+
" }\n",
256+
"\n",
257+
" .dataframe thead th {\n",
258+
" text-align: right;\n",
259+
" }\n",
260+
"</style>\n",
261+
"<table border=\"1\" class=\"dataframe\">\n",
262+
" <thead>\n",
263+
" <tr style=\"text-align: right;\">\n",
264+
" <th></th>\n",
265+
" <th>avg_d_kbps</th>\n",
266+
" <th>geometry</th>\n",
267+
" </tr>\n",
268+
" </thead>\n",
269+
" <tbody>\n",
270+
" <tr>\n",
271+
" <th>383429</th>\n",
272+
" <td>13570</td>\n",
273+
" <td>POINT (-2.94159 58.99673)</td>\n",
274+
" </tr>\n",
275+
" <tr>\n",
276+
" <th>383430</th>\n",
277+
" <td>18108</td>\n",
278+
" <td>POINT (-3.29865 58.96276)</td>\n",
279+
" </tr>\n",
280+
" <tr>\n",
281+
" <th>383431</th>\n",
282+
" <td>5569</td>\n",
283+
" <td>POINT (-3.29315 58.97125)</td>\n",
284+
" </tr>\n",
285+
" <tr>\n",
286+
" <th>383432</th>\n",
287+
" <td>9349</td>\n",
288+
" <td>POINT (-3.29315 58.96842)</td>\n",
289+
" </tr>\n",
290+
" <tr>\n",
291+
" <th>383433</th>\n",
292+
" <td>11216</td>\n",
293+
" <td>POINT (-3.23273 58.98541)</td>\n",
294+
" </tr>\n",
295+
" <tr>\n",
296+
" <th>...</th>\n",
297+
" <td>...</td>\n",
298+
" <td>...</td>\n",
299+
" </tr>\n",
300+
" <tr>\n",
301+
" <th>1840929</th>\n",
302+
" <td>104723</td>\n",
303+
" <td>POINT (25.38666 35.09519)</td>\n",
304+
" </tr>\n",
305+
" <tr>\n",
306+
" <th>1840930</th>\n",
307+
" <td>62540</td>\n",
308+
" <td>POINT (25.44708 35.04124)</td>\n",
309+
" </tr>\n",
310+
" <tr>\n",
311+
" <th>1840931</th>\n",
312+
" <td>88068</td>\n",
313+
" <td>POINT (25.47455 35.04124)</td>\n",
314+
" </tr>\n",
315+
" <tr>\n",
316+
" <th>1840938</th>\n",
317+
" <td>38255</td>\n",
318+
" <td>POINT (25.38116 35.00075)</td>\n",
319+
" </tr>\n",
320+
" <tr>\n",
321+
" <th>1840939</th>\n",
322+
" <td>91750</td>\n",
323+
" <td>POINT (25.45807 34.99175)</td>\n",
324+
" </tr>\n",
325+
" </tbody>\n",
326+
"</table>\n",
327+
"<p>807221 rows × 2 columns</p>\n",
328+
"</div>"
329+
],
330+
"text/plain": [
331+
" avg_d_kbps geometry\n",
332+
"383429 13570 POINT (-2.94159 58.99673)\n",
333+
"383430 18108 POINT (-3.29865 58.96276)\n",
334+
"383431 5569 POINT (-3.29315 58.97125)\n",
335+
"383432 9349 POINT (-3.29315 58.96842)\n",
336+
"383433 11216 POINT (-3.23273 58.98541)\n",
337+
"... ... ...\n",
338+
"1840929 104723 POINT (25.38666 35.09519)\n",
339+
"1840930 62540 POINT (25.44708 35.04124)\n",
340+
"1840931 88068 POINT (25.47455 35.04124)\n",
341+
"1840938 38255 POINT (25.38116 35.00075)\n",
342+
"1840939 91750 POINT (25.45807 34.99175)\n",
343+
"\n",
344+
"[807221 rows x 2 columns]"
345+
]
346+
},
347+
"execution_count": 9,
348+
"metadata": {},
349+
"output_type": "execute_result"
350+
}
351+
],
352+
"source": [
353+
"gdf"
354+
]
355+
},
356+
{
357+
"cell_type": "markdown",
358+
"id": "81a61ec4-2a09-40c0-aa92-7dca570bbd49",
359+
"metadata": {},
360+
"source": [
361+
"The simplest way to get data on the map is to use `viz`:"
362+
]
363+
},
364+
{
365+
"cell_type": "code",
366+
"execution_count": 10,
367+
"id": "326f5f4e-a8f7-425b-8e9f-6744ba65cf62",
224368
"metadata": {},
225369
"outputs": [
226370
{
227371
"data": {
228372
"application/vnd.jupyter.widget-view+json": {
229-
"model_id": "bcbf7e3fa1bc4dc3ac46bbf3f97d48da",
373+
"model_id": "30ba30dd2b9f4d47b307fa98ea9bf896",
230374
"version_major": 2,
231375
"version_minor": 0
232376
},
233377
"text/plain": [
234-
"ScatterplotLayer(get_fill_color=[0, 0, 200, 30], table=pyarrow.Table\n",
235-
"geometry: fixed_size_list<item: double>[2…"
378+
"ScatterplotLayer(table=pyarrow.Table\n",
379+
"avg_d_kbps: int64\n",
380+
"__index_level_0__: int64\n",
381+
"geometry: fixed_size_list<item…"
382+
]
383+
},
384+
"execution_count": 10,
385+
"metadata": {},
386+
"output_type": "execute_result"
387+
}
388+
],
389+
"source": [
390+
"map_ = viz(gdf)\n",
391+
"map_"
392+
]
393+
},
394+
{
395+
"cell_type": "markdown",
396+
"id": "91af2a88-9363-4c00-8e54-f06a635ff991",
397+
"metadata": {},
398+
"source": [
399+
"This map object is a `ScatterplotLayer` type. You could have created the same map by using\n",
400+
"```py\n",
401+
"map_ = lonboard.ScatterplotLayer.from_geopandas(gdf)\n",
402+
"```"
403+
]
404+
},
405+
{
406+
"cell_type": "code",
407+
"execution_count": 11,
408+
"id": "7d0f6f03-ca11-4842-8e53-4a619ad7d3dd",
409+
"metadata": {},
410+
"outputs": [
411+
{
412+
"data": {
413+
"text/plain": [
414+
"lonboard.layer.ScatterplotLayer"
236415
]
237416
},
238-
"execution_count": 8,
417+
"execution_count": 11,
239418
"metadata": {},
240419
"output_type": "execute_result"
241420
}
242421
],
243422
"source": [
244-
"layer = ScatterplotLayer.from_geopandas(gdf[[\"geometry\"]], get_fill_color=[0, 0, 200, 30])\n",
245-
"layer"
423+
"type(map_)"
424+
]
425+
},
426+
{
427+
"cell_type": "markdown",
428+
"id": "6f4d89c3-282a-4beb-9f35-68eb9645e8c0",
429+
"metadata": {},
430+
"source": [
431+
"We can look at the [documentation for `ScatterplotLayer`](https://developmentseed.org/lonboard/api/layers/scatterplot-layer/) to see what other rendering options it allows. Let's set the fill color to something other than black:"
432+
]
433+
},
434+
{
435+
"cell_type": "code",
436+
"execution_count": 12,
437+
"id": "3912b241-577f-4ac3-b78f-2702e89d6010",
438+
"metadata": {},
439+
"outputs": [],
440+
"source": [
441+
"map_.get_fill_color = [0, 0, 200, 200]"
246442
]
247443
},
248444
{
@@ -258,18 +454,18 @@
258454
"id": "ce630455-3e19-47f1-bb69-81fdcd99b126",
259455
"metadata": {},
260456
"source": [
261-
"Here we compute a linear statistic for the download speed. Given a minimum bound of `1000` and a maximum bound of `30,000` the normalized speed is linearly scaled to between 0 and 1."
457+
"Here we compute a linear statistic for the download speed. Given a minimum bound of `5000` and a maximum bound of `50,000` the normalized speed is linearly scaled to between 0 and 1."
262458
]
263459
},
264460
{
265461
"cell_type": "code",
266-
"execution_count": 9,
462+
"execution_count": 13,
267463
"id": "179071b3",
268464
"metadata": {},
269465
"outputs": [],
270466
"source": [
271-
"min_bound = 1000\n",
272-
"max_bound = 30000\n",
467+
"min_bound = 5000\n",
468+
"max_bound = 50000\n",
273469
"download_speed = gdf['avg_d_kbps']\n",
274470
"normalized_download_speed = (download_speed - min_bound) / (max_bound - min_bound)"
275471
]
@@ -284,28 +480,28 @@
284480
},
285481
{
286482
"cell_type": "code",
287-
"execution_count": 10,
483+
"execution_count": 14,
288484
"id": "a8df3963-2bc2-4f89-8a38-20e232a13932",
289485
"metadata": {},
290486
"outputs": [
291487
{
292488
"data": {
293489
"text/plain": [
294-
"0 0.171828\n",
295-
"1 0.094759\n",
296-
"2 0.081517\n",
297-
"3 0.047621\n",
298-
"4 0.070586\n",
490+
"383429 0.190444\n",
491+
"383430 0.291289\n",
492+
"383431 0.012644\n",
493+
"383432 0.096644\n",
494+
"383433 0.138133\n",
299495
" ... \n",
300-
"3231240 0.638897\n",
301-
"3231241 0.506655\n",
302-
"3231242 0.887828\n",
303-
"3231243 2.310172\n",
304-
"3231244 0.007931\n",
305-
"Name: avg_d_kbps, Length: 3231245, dtype: float64"
496+
"1840929 2.216067\n",
497+
"1840930 1.278667\n",
498+
"1840931 1.845956\n",
499+
"1840938 0.739000\n",
500+
"1840939 1.927778\n",
501+
"Name: avg_d_kbps, Length: 807221, dtype: float64"
306502
]
307503
},
308-
"execution_count": 10,
504+
"execution_count": 14,
309505
"metadata": {},
310506
"output_type": "execute_result"
311507
}
@@ -324,7 +520,7 @@
324520
},
325521
{
326522
"cell_type": "code",
327-
"execution_count": 11,
523+
"execution_count": 15,
328524
"id": "9d5347e2-84c7-40bc-af45-c8638188709e",
329525
"metadata": {},
330526
"outputs": [
@@ -335,10 +531,10 @@
335531
"<div style=\"vertical-align: middle;\"><strong>BrBG</strong> </div><div class=\"cmap\"><img alt=\"BrBG colormap\" title=\"BrBG\" style=\"border: 1px solid #555;\" src=\"\"></div><div style=\"vertical-align: middle; max-width: 514px; display: flex; justify-content: space-between;\"><div style=\"float: left;\"><div title=\"#543005ff\" style=\"display: inline-block; width: 1em; height: 1em; margin: 0; vertical-align: middle; border: 1px solid #555; background-color: #543005ff;\"></div> under</div><div style=\"margin: 0 auto; display: inline-block;\">bad <div title=\"#00000000\" style=\"display: inline-block; width: 1em; height: 1em; margin: 0; vertical-align: middle; border: 1px solid #555; background-color: #00000000;\"></div></div><div style=\"float: right;\">over <div title=\"#003c30ff\" style=\"display: inline-block; width: 1em; height: 1em; margin: 0; vertical-align: middle; border: 1px solid #555; background-color: #003c30ff;\"></div></div>"
336532
],
337533
"text/plain": [
338-
"<matplotlib.colors.LinearSegmentedColormap at 0x156515290>"
534+
"<matplotlib.colors.LinearSegmentedColormap at 0x1105c2950>"
339535
]
340536
},
341-
"execution_count": 11,
537+
"execution_count": 15,
342538
"metadata": {},
343539
"output_type": "execute_result"
344540
}
@@ -357,12 +553,12 @@
357553
},
358554
{
359555
"cell_type": "code",
360-
"execution_count": 19,
556+
"execution_count": 16,
361557
"id": "5a77f728-9cbe-4372-9bfd-d6dee4b93a01",
362558
"metadata": {},
363559
"outputs": [],
364560
"source": [
365-
"layer.get_fill_color = apply_continuous_cmap(normalized_download_speed, BrBG_10, alpha=0.3)"
561+
"map_.get_fill_color = apply_continuous_cmap(normalized_download_speed, BrBG_10)"
366562
]
367563
},
368564
{
@@ -385,15 +581,15 @@
385581
},
386582
{
387583
"cell_type": "code",
388-
"execution_count": 13,
584+
"execution_count": 17,
389585
"id": "579233ef-e077-4c8f-a111-f33d44f30a0d",
390586
"metadata": {},
391587
"outputs": [],
392588
"source": [
393589
"# for now, cast to a numpy array until the layer is updated to support pandas series\n",
394-
"layer.get_radius = np.array(normalized_download_speed) * 200\n",
395-
"layer.radius_units = \"meters\"\n",
396-
"layer.radius_min_pixels = 0.5"
590+
"map_.get_radius = np.array(normalized_download_speed) * 200\n",
591+
"map_.radius_units = \"meters\"\n",
592+
"map_.radius_min_pixels = 0.5"
397593
]
398594
},
399595
{
@@ -407,9 +603,9 @@
407603
],
408604
"metadata": {
409605
"kernelspec": {
410-
"display_name": "lonboard",
606+
"display_name": "Python 3 (ipykernel)",
411607
"language": "python",
412-
"name": "lonboard"
608+
"name": "python3"
413609
},
414610
"language_info": {
415611
"codemirror_mode": {

0 commit comments

Comments
 (0)