diff --git a/doc/grahom.xml b/doc/grahom.xml index df6bf9e68..7f7e2922d 100644 --- a/doc/grahom.xml +++ b/doc/grahom.xml @@ -321,9 +321,9 @@ gap> MonomorphismsDigraphsRepresentatives(gr1, CompleteDigraph(3)); the vertices and the edges of digraph1, and are therefore possibly strictly contained in the induced subdigraph on the same vertex set. SubdigraphsMonomorphisms(CompleteBipartiteDigraph(2, 2), -> CompleteDigraph(4)); -[ Transformation( [ 2, 3, 1 ] ), Transformation( [ 1, 3, 2 ] ), +gap> Set(SubdigraphsMonomorphisms(CompleteBipartiteDigraph(2, 2), +> CompleteDigraph(4))); +[ Transformation( [ 1, 3, 2 ] ), Transformation( [ 2, 3, 1 ] ), Transformation( [ 3, 4, 2, 1 ] ) ] gap> SubdigraphsMonomorphismsRepresentatives( > CompleteBipartiteDigraph(2, 2), CompleteDigraph(4)); diff --git a/tst/standard/grahom.tst b/tst/standard/grahom.tst index 9f8e94135..68c637947 100644 --- a/tst/standard/grahom.tst +++ b/tst/standard/grahom.tst @@ -2762,13 +2762,13 @@ gap> IsLatticeEpimorphism(D, D, (2, 3)); true # SubdigraphsMonomorphisms -gap> SubdigraphsMonomorphisms(CompleteBipartiteDigraph(2, 2), -> CompleteDigraph(4)); -[ Transformation( [ 2, 3, 1 ] ), Transformation( [ 1, 3, 2 ] ), +gap> Set(SubdigraphsMonomorphisms(CompleteBipartiteDigraph(2, 2), +> CompleteDigraph(4))); +[ Transformation( [ 1, 3, 2 ] ), Transformation( [ 2, 3, 1 ] ), Transformation( [ 3, 4, 2, 1 ] ) ] gap> D := DigraphFromGraph6String("D^{"); -gap> SubdigraphsMonomorphisms(CompleteDigraph(4), D); +gap> Set(SubdigraphsMonomorphisms(CompleteDigraph(4), D)); [ Transformation( [ 1, 3, 4, 5, 5 ] ), Transformation( [ 2, 3, 4, 5, 5 ] ) ] gap> Length(SubdigraphsMonomorphisms(CompleteDigraph(4), CompleteDigraph(12))); 495 diff --git a/tst/testinstall.tst b/tst/testinstall.tst index 721d2441b..fbf44f2a0 100644 --- a/tst/testinstall.tst +++ b/tst/testinstall.tst @@ -455,9 +455,8 @@ gap> DigraphEdges(C); # Issue #704 SubdigraphsMonomorphisms bug gap> d := Digraph([[2, 3, 4, 5], [1, 3, 4], [1, 2, 4, 5], [1, 2, 3, 5], > [1, 3, 4]]);; -gap> SubdigraphsMonomorphisms(CompleteMultipartiteDigraph([2, 3]), d); -[ Transformation( [ 1, 3, 2 ] ), Transformation( [ 2, 5, 1, 3, 4 ] ), - Transformation( [ 1, 4, 2, 3 ] ), Transformation( [ 3, 4, 2, 1 ] ) ] +gap> Length(SubdigraphsMonomorphisms(CompleteMultipartiteDigraph([2, 3]), d)); +4 # DIGRAPHS_UnbindVariables gap> Unbind(C);