|
| 1 | +%! Mode:: "TeX:UTF-8" |
| 2 | +%!TEX encoding = UTF-8 Unicode |
| 3 | +%!TEX TS-program = xelatex |
| 4 | +\documentclass{ctexart} |
| 5 | +\usepackage{bbm} |
| 6 | +\usepackage{tikz} |
| 7 | +\usepackage{amsmath,amssymb,amsthm,color,mathrsfs} |
| 8 | +\usepackage{hyperref} |
| 9 | +\usepackage{cleveref} |
| 10 | +\usepackage{enumitem,anysize}% |
| 11 | +\usepackage{expl3} |
| 12 | +\marginsize{1in}{1in}{1in}{1in}% |
| 13 | +\theoremstyle{remark} |
| 14 | +\newtheorem*{claim*}{Claim} |
| 15 | +\newtheorem{lemma}{Lemma} |
| 16 | + |
| 17 | +\DeclareMathOperator{\ot}{ordertype} |
| 18 | +\DeclareMathOperator{\dom}{dom} |
| 19 | +\DeclareMathOperator{\ran}{ran} |
| 20 | +\DeclareMathOperator{\field}{field} |
| 21 | +\DeclareMathOperator{\Ord}{Ord} |
| 22 | + |
| 23 | +\newcommand{\cc}{\mathfrak{c}} |
| 24 | + |
| 25 | +\def\email#1{{\texttt{#1}}} |
| 26 | +\newcommand{\isep}[1][0pt]{\addtolength{\itemsep}{#1}} |
| 27 | +\newcounter{problem} |
| 28 | +\renewcommand{\theproblem}{\Roman{problem}} |
| 29 | +\newenvironment{problem}{\refstepcounter{problem}\noindent\color{blue}\begin{tikzpicture}[baseline]% |
| 30 | +\node at (-0.02em,0.3em) {$\mathbb{P}$};% |
| 31 | +\node[scale=0.7] at (0.2em,-0.0em) {R};% |
| 32 | +\node[scale=0.7] at (0.6em,0.4em) {O};% |
| 33 | +\node[scale=0.8] at (1.05em,0.25em) {B};% |
| 34 | +\node at (1.55em,0.3em) {L};% |
| 35 | +\node[scale=0.7] at (1.75em,0.45em) {E};% |
| 36 | +\node at (2.35em,0.3em) {M};% |
| 37 | +\end{tikzpicture}\theproblem}{} |
| 38 | +\crefname{problem}{Problem}{Problem} |
| 39 | +%\renewcommand\theprob{{\Roman{problem}}} |
| 40 | +\newcommand\mysolution{\begin{tikzpicture}[baseline]% |
| 41 | +\node at (-0.04em,0.3em) {$\mathbb{S}$};% |
| 42 | +\node[scale=0.7] at (0.35em,0.4em) {O};% |
| 43 | +\node at (0.7em,0.3em) {\textit{L}};% |
| 44 | +\node[scale=0.7] at (0.95em,0.4em) {U};% |
| 45 | +\node[scale=1.1] at (1.19em,0.32em){T};% |
| 46 | +\node[scale=0.85] at (1.4em,0.24em){I};% |
| 47 | +\node at (1.9em,0.32em){$\mathcal{O}$};% |
| 48 | +\node[scale=0.75] at (2.3em,0.21em){\texttt{N}};% |
| 49 | +\end{tikzpicture}} |
| 50 | +\newenvironment{solution}{\begin{proof}[\mysolution]}{\end{proof}} |
| 51 | + |
| 52 | +%%%%%%%% |
| 53 | +\newcommand{\calL}{\mathcal{L}} |
| 54 | + |
| 55 | +\newcommand\<{\langle} |
| 56 | +\renewcommand\>{\rangle} |
| 57 | +\newcommand\eneg{\mathcal{E}_{\neg}} |
| 58 | +\newcommand\eto{\mathcal{E}_{\to}} |
| 59 | +\newcommand\N{\mathbb{N}} |
| 60 | +\newcommand\subini{\subsetneqq_{init}} |
| 61 | +\def\to{\rightarrow} |
| 62 | +\newcommand{\calA}{\mathcal{A}} |
| 63 | +\newcommand{\xor}{\vee} |
| 64 | +\newcommand{\bor}{\bigvee} |
| 65 | +\newcommand{\band}{\bigwedge} |
| 66 | +\newcommand{\xand}{\wedge} |
| 67 | +\newcommand{\minus}{\mathbin{\backslash}} |
| 68 | +\newcommand{\calF}{\mathcal{F}} |
| 69 | +\newcommand\mi[1]{\mathscr{P}(#1)} |
| 70 | +\newcommand{\calB}{\mathcal{B}} |
| 71 | +\newcommand{\heq}{\mathop{\hat{=}}} |
| 72 | +\newcommand{\hneq}{\mathop{\hat{\neq}}} |
| 73 | +\newcommand{\calR}{\mathcal{R}} |
| 74 | +\newcommand{\hle}{\mathop{\hat{<}}} |
| 75 | +\newcommand{\R}{\mathbb{R}} |
| 76 | +\newcommand{\calM}{\mathcal{M}} |
| 77 | +\newcommand{\calN}{\mathcal{N}} |
| 78 | +\newcommand{\frA}{\mathfrak{A}} |
| 79 | +\newcommand{\card}{\mathrm{card}} |
| 80 | +\newcommand{\frM}{\mathfrak{M}} |
| 81 | +\newcommand{\Th}{\mathrm{Th}} |
| 82 | +\newcommand{\ecd}{\mathrm{EC}_\Delta} |
| 83 | +\newcommand{\Q}{\mathbb{Q}} |
| 84 | +\newcommand{\Z}{\mathbb{Z}} |
| 85 | +\newcommand{\oto}{\leftrightarrow} |
| 86 | +\newcommand{\hin}{\hat{\in}} |
| 87 | +\newcommand{\fun}[2]{{}^{#1}#2} |
| 88 | +\newcommand{\A}{\mathbbm{A}} |
| 89 | + |
| 90 | + |
| 91 | + |
| 92 | + |
| 93 | + |
| 94 | + |
| 95 | + |
| 96 | + |
| 97 | +\begin{document} |
| 98 | +\title{$\mathbb{ALGEBRAIC\ GEOMETRY}$} |
| 99 | +\author{白永乐\\ %% 姓名 |
| 100 | +SID: 202011150087\\ %% 学号 |
| 101 | + |
| 102 | +\maketitle |
| 103 | +\begin{problem} |
| 104 | +$P$ is an ideal of a unitary commutative ring $A$, then $P$ is prime ideal of $A\iff A/P$ is integral domain. |
| 105 | +\end{problem} |
| 106 | + |
| 107 | +\begin{problem} |
| 108 | +$M$ is an ideal of a unitary commutative ring $A$, then $M$ is maximal ideal of $A \iff A/M$ is a field. |
| 109 | +\end{problem} |
| 110 | + |
| 111 | +\begin{problem} |
| 112 | +A ring $A$ is noetherian, $I\subset A$ is an ideal of $A$, then $A/I$ is noetherian. |
| 113 | +\end{problem} |
| 114 | + |
| 115 | +\begin{problem} |
| 116 | +\label{pro:4} |
| 117 | +$K$ is a field, $A=K[x_1,x_2,\cdots x_n],\A^n_K=K^n$. For ideal $I$ of $A$ let $V(I):=\{p\in\A_K^n:f(p)=0,\forall f\in I\}$. Then $V(I_1)\cup V(I_2)=V(I_1\cap I_2)=V(I_1I_2)$ |
| 118 | +\end{problem} |
| 119 | + |
| 120 | +\begin{problem} |
| 121 | +$K$ is an infinite field, then $\A_k^n$ is not Hausdorff. |
| 122 | +\end{problem} |
| 123 | + |
| 124 | +\end{document} |
0 commit comments