-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinference_decoding_nonp.py
370 lines (310 loc) · 13.7 KB
/
inference_decoding_nonp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
from sd_pipeline import DPS_continuous_SDPipeline, Decoding_nonbatch_SDPipeline
from diffusers import DDIMScheduler
import torch
import torch.nn.functional as F
import numpy as np
import random
from PIL import Image
import PIL
from typing import Callable, List, Optional, Union, Dict, Any
from dataset import AVACompressibilityDataset, AVACLIPDataset, AVAHpsDataset
from vae import encode
import os
from aesthetic_scorer import AestheticScorerDiff_Time, MLPDiff
import wandb
import argparse
from tqdm import tqdm
import datetime
from compressibility_scorer import CompressibilityScorerDiff, jpeg_compressibility, CompressibilityScorer_modified
from aesthetic_scorer import AestheticScorerDiff, hpsScorer
from transformers import CLIPProcessor, CLIPModel
from brisque import BRISQUE
from PIL import Image
from transformers import CLIPVisionModel, CLIPImageProcessor, CLIPVisionConfig
from sklearn.metrics.pairwise import cosine_similarity
def parse():
parser = argparse.ArgumentParser(description="Inference")
parser.add_argument("--device", default="cuda")
parser.add_argument("--reward", type=str, default='aesthetic')
parser.add_argument("--out_dir", type=str, default="")
parser.add_argument("--num_images", type=int, default=4)
parser.add_argument("--bs", type=int, default=2)
parser.add_argument("--oversamplerate", type=int, default=1)
parser.add_argument("--w", type=float, default=1)
parser.add_argument("--search_schudule", type=str, default="all")
parser.add_argument("--drop_schudule", type=str, default=None)
parser.add_argument("--replacerate", type=float, default=0)
parser.add_argument("--val_bs", type=int, default=1)
parser.add_argument("--seed", type=int, default=42)
parser.add_argument("--duplicate_size",type=int, default=20)
parser.add_argument("--variant", type=str, default="PM")
parser.add_argument("--valuefunction", type=str, default="")
parser.add_argument("--wandb_mode", type=str, default="online")
args = parser.parse_args()
return args
######### preparation ##########
args = parse()
device= args.device
save_file = True
# DDES type
DDES_type = None
assert args.oversamplerate == 1 or args.replacerate == 0.0
if args.oversamplerate > 1:
DDES_type = 'DDES_E'
elif args.replacerate > 0:
DDES_type = 'DDES_R'
else:
DDES_type = 'SVDD'
# assert args.num_images // args.bs == 3
num_group = 3 #args.num_images // args.bs
## Image Seeds
if args.seed > 0:
torch.manual_seed(args.seed)
random.seed(args.seed)
np.random.seed(args.seed)
shape = (args.num_images//args.bs, (args.bs*args.oversamplerate) , 4, 64, 64)
init_latents = torch.randn(shape, device=device)
else:
init_latents = None
if args.replacerate <= 0 and args.oversamplerate <= 1:
search_appx = ""
else:
search_appx = f"R{args.replacerate}" if args.replacerate> 0 else f"E{args.oversamplerate}"
search_appx = search_appx + f"_C{args.w*args.oversamplerate}_{args.search_schudule}_{args.drop_schudule}"
run_name = f"{args.variant}_M={args.duplicate_size}_reward_{args.reward}_{args.valuefunction.split('/')[-1] if args.valuefunction != '' else ''}" + search_appx
unique_id = datetime.datetime.now().strftime("%Y.%m.%d_%H.%M.%S")
run_name = run_name + '_' + unique_id
if args.out_dir == "":
args.out_dir = 'logs/' + run_name
try:
os.makedirs(args.out_dir)
except:
pass
wandb.init(project=f"SVDD-{args.reward}", name=run_name, config=args, mode=args.wandb_mode)
start_event = torch.cuda.Event(enable_timing=True)
end_event = torch.cuda.Event(enable_timing=True)
start_event.record()
initial_memory = torch.cuda.memory_allocated()
sd_model = Decoding_nonbatch_SDPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", local_files_only=False)
sd_model.to(device)
# switch to DDIM scheduler
sd_model.scheduler = DDIMScheduler.from_config(sd_model.scheduler.config)
sd_model.scheduler.set_timesteps(50, device=device)
sd_model.vae.requires_grad_(False)
sd_model.text_encoder.requires_grad_(False)
sd_model.unet.requires_grad_(False)
sd_model.vae.eval()
sd_model.text_encoder.eval()
sd_model.unet.eval()
assert args.variant in ['PM', 'MC']
if args.reward == 'compressibility':
if args.variant == 'PM':
scorer = CompressibilityScorer_modified(dtype=torch.float32)#.to(device)
elif args.variant == 'MC':
scorer = CompressibilityScorerDiff(dtype=torch.float32).to(device)
elif args.reward == 'aesthetic':
if args.variant == 'PM':
scorer = AestheticScorerDiff(dtype=torch.float32).to(device)
elif args.variant == 'MC':
scorer = AestheticScorerDiff_Time(dtype=torch.float32).to(device)
if args.valuefunction != "":
scorer.set_valuefunction(args.valuefunction)
scorer = scorer.to(device)
elif args.reward == 'hps':
if args.variant == 'PM':
scorer = hpsScorer(inference_dtype=torch.float32, device=device).to(device)
else:
raise ValueError("Invalid variant")
else:
raise ValueError("Invalid reward")
scorer.requires_grad_(False)
scorer.eval()
sd_model.setup_scorer(scorer)
sd_model.set_variant(args.variant)
sd_model.set_reward(args.reward)
sd_model.set_parameters(args.bs, args.duplicate_size, args.w, args.search_schudule, args.drop_schudule, args.oversamplerate, args.replacerate)
### introducing evaluation prompts
import prompts as prompts_file
if args.reward == 'hps':
eval_prompt_fn = getattr(prompts_file, 'eval_hps_v2')
else:
eval_prompt_fn = getattr(prompts_file, 'eval_aesthetic_animals')
batchwise_prompts = ['dog', 'cat', 'panda', 'monkey', 'rabbit', 'butterfly', 'horse']
image = []
eval_prompt_list = []
KL_list = []
for i in tqdm(range(args.num_images // args.bs), desc="Generating Images"):
wandb.log(
{"inner_iter": i}
)
if init_latents is None:
init_i = None
else:
init_i = init_latents[i]
eval_prompts, _ = zip(
*[eval_prompt_fn() for _ in range(args.bs*args.oversamplerate)]
)
eval_prompts = list(eval_prompts)
if search_appx != "" and search_appx.startswith("R"):
print("search_appx", search_appx)
eval_prompts = [eval_prompts[i%7] for _ in range(args.bs * args.oversamplerate)]
image_, kl_loss, cur_prompt = sd_model(eval_prompts, num_images_per_prompt=1, eta=1.0, latents=init_i) # List of PIL.Image objects
if search_appx != "" and search_appx.startswith("E"):
print("search_appx", search_appx)
eval_prompt_list.extend(cur_prompt)
else:
eval_prompt_list.extend(eval_prompts)
image.extend(image_)
KL_list.append(kl_loss)
# KL_entropy = torch.mean(torch.stack(KL_list))
end_event.record()
torch.cuda.synchronize() # Wait for the events to complete
gpu_time = start_event.elapsed_time(end_event)/1000 # Time in seconds
max_memory = torch.cuda.max_memory_allocated()
max_memory_used = (max_memory - initial_memory) / (1024 ** 2)
wandb.log({
"GPUTimeInS": gpu_time,
"MaxMemoryInMb": max_memory_used,
})
###### evaluation and metric #####
def compute_metrics(r_batch):
return_dict = {}
for key in r_batch:
value = r_batch[key]
if key == 'diversity':
value = torch.concat(value, dim=0) # bs * dim
# value = F.normalize(value, p=2, dim=1)
cosine_matrix = cosine_similarity(value)
# cosine_matrix = torch.mm(value, value.T)
bs = cosine_matrix.shape[0]
cosine_matrix_no_diag = cosine_matrix - np.eye(bs)
cosine_similarity_matrix = cosine_matrix_no_diag.sum() / (bs * (bs - 1) + 1e-8)
mean_value = 1 - cosine_similarity_matrix.item()
else:
mean_value = np.mean(value).item()
return_dict[f'{key}'] = mean_value
return return_dict
# CLIP model
clip_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32").to(device)
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
# clip_model, processor = clip.load('ViT-B/32', device)
# image_processor = CLIPImageProcessor.from_pretrained("openai/clip-vit-large-patch14")
# vision_tower = CLIPVisionModel.from_pretrained("openai/clip-vit-large-patch14", device_map=device)
if args.reward == 'compressibility':
gt_dataset= AVACompressibilityDataset(image)
elif args.reward == 'aesthetic':
from importlib import resources
ASSETS_PATH = resources.files("assets")
eval_model = MLPDiff().to(device)
eval_model.requires_grad_(False)
eval_model.eval()
s = torch.load(ASSETS_PATH.joinpath("sac+logos+ava1-l14-linearMSE.pth"), map_location=device, weights_only=True)
eval_model.load_state_dict(s)
gt_dataset= AVACLIPDataset(image)
elif args.reward == 'hps':
gt_dataset= AVAHpsDataset(image)
gt_dataloader = torch.utils.data.DataLoader(gt_dataset, batch_size=args.val_bs, shuffle=False)
with torch.no_grad():
eval_rewards = []
all_image_embeds = []
all_quality_score = []
for image_idx, inputs in enumerate(gt_dataloader):
inputs = inputs.to(device)
if args.reward == 'compressibility':
jpeg_compressibility_scores = jpeg_compressibility(inputs)
scores = torch.tensor(jpeg_compressibility_scores, dtype=inputs.dtype, device=inputs.device)
elif args.reward == 'aesthetic':
scores = eval_model(inputs)
scores = scores.squeeze(1)
elif args.reward == 'hps':
scores, _ = scorer(inputs, [eval_prompt_list[image_idx]], processed=False)
# record embedding
raw_image = image[image_idx]
inputs_clip = processor(images=raw_image, return_tensors="pt")
inputs_clip = {key: value.to(device) for key, value in inputs_clip.items()}
image_embed = clip_model.get_image_features(**inputs_clip) # bs * 512
all_image_embeds.append(image_embed.cpu())
# image_input = processor(image).unsqueeze(0).to(device)
# image_embed = clip_model.encode_image(image_input)
# all_image_embeds.append(image_embed)
# inputs_clip = image_processor.preprocess(inputs, return_tensors='pt')['pixel_values'][0]
# inputs_clip = inputs_clip.to(device)
# image_embed = vision_tower(inputs_clip.unsqueeze(0), output_hidden_states=True)
# image_embed = image_embed.hidden_states[-2]
# image_embed = image_embed.reshape(1, -1)
# all_image_embeds.append(image_embed)
# image_embed = inputs.reshape(1, -1)
# all_image_embeds.append(image_embed)
# quality score
obj = BRISQUE(url=False)
quality_score = obj.score(img=np.asarray(image[image_idx]))
all_quality_score.append(quality_score)
# reward
eval_rewards.extend(scores.tolist())
assert len(eval_rewards) == len(all_image_embeds) == len(all_quality_score)
# shuffle
combined = list(zip(eval_rewards, all_image_embeds, all_quality_score))
random.shuffle(combined)
eval_rewards1, all_image_embeds, all_quality_score = zip(*combined)
eval_rewards1 = list(eval_rewards1)
all_image_embeds = list(all_image_embeds)
all_quality_score = list(all_quality_score)
# split list to 3 groups
n = len(eval_rewards1) // num_group
result_batches = [
{
"rewards": eval_rewards1[i * n:(i + 1) * n],
"diversity": all_image_embeds[i * n:(i + 1) * n],
"quality": all_quality_score[i * n:(i + 1) * n]
}
for i in range(num_group)
]
# each group metrics
result_batches_metrics = [compute_metrics(batch) for batch in result_batches]
log_metrics = {}
mean_metrics = {f"eval_{args.reward}_{key}_mean": np.mean([m[key] for m in result_batches_metrics]) for key in result_batches_metrics[0]}
std_metrics = {f"eval_{args.reward}_{key}_std": np.std([m[key] for m in result_batches_metrics]) for key in result_batches_metrics[0]}
log_metrics.update(mean_metrics)
log_metrics.update(std_metrics)
# # calculate diversity
# all_image_embeds = torch.concat(all_image_embeds, dim=0) # bs * dim
# all_image_embeds = F.normalize(all_image_embeds, p=2, dim=1)
# cosine_similarity_matrix = torch.mm(all_image_embeds, all_image_embeds.T)
#
# bs = cosine_similarity_matrix.size(0)
# cosine_similarity_matrix_no_diag = cosine_similarity_matrix - torch.eye(bs, device=cosine_similarity_matrix.device)
# mean_cosine_similarity = cosine_similarity_matrix_no_diag.sum() / (bs * (bs - 1))
# diversity = 1 - mean_cosine_similarity.item()
#
# # quality
# quality = sum(all_quality_score) / len(all_quality_score)
eval_rewards1 = torch.tensor(eval_rewards1)
print(f"eval_{args.reward}_rewards_mean: {torch.mean(eval_rewards1)}")
# wandb.log({
# f"eval_{args.reward}_rewards_mean": torch.mean(eval_rewards),
# f"eval_{args.reward}_diversity": diversity,
# f"eval_{args.reward}_quality": quality,
# })
wandb.log(log_metrics)
if save_file:
images = []
log_dir = os.path.join(args.out_dir, "eval_vis")
os.makedirs(log_dir, exist_ok=True)
np.save(f"{args.out_dir}/scores.npy", eval_rewards)
# Function to save array to a text file with commas
def save_array_to_text_file(array, file_path):
with open(file_path, 'w') as file:
array_str = ','.join(map(str, array.tolist()))
file.write(array_str + ',')
# Save the arrays to text files
save_array_to_text_file(torch.tensor(eval_rewards), f"{args.out_dir}/eval_rewards.txt")
print("Arrays have been saved to text files.")
for idx, im in enumerate(image):
prompt = eval_prompt_list[idx]
reward = eval_rewards[idx]
im.save(f"{log_dir}/{idx:03d}_{prompt}_score={reward:2f}.png")
pil = im.resize((256, 256))
images.append(wandb.Image(pil, caption=f"{prompt:.25} | score:{reward:.2f}"))
wandb.log(
{"images": images}
)