|
67 | 67 | $(LREF any)
|
68 | 68 | $(LREF indexOf)
|
69 | 69 | ))
|
| 70 | + $(TR $(TD Template instantiation) $(TD |
| 71 | + $(LREF ApplyLeft) |
| 72 | + $(LREF ApplyRight) |
| 73 | + $(LREF Instantiate) |
| 74 | + )) |
70 | 75 | )
|
71 | 76 |
|
72 | 77 | References:
|
@@ -672,3 +677,327 @@ unittest
|
672 | 677 | static assert(indexOf!(isSameType!string, int, int, int, string) == 3);
|
673 | 678 | static assert(indexOf!(isSameType!string, int, int, int, int) == -1);
|
674 | 679 | }
|
| 680 | + |
| 681 | +/++ |
| 682 | + Instantiates the given template with the given arguments and evaluates to |
| 683 | + the result of that template. |
| 684 | +
|
| 685 | + This is used to work around some syntactic limitations that D has with |
| 686 | + regards to instantiating templates. Essentially, D requires a name for a |
| 687 | + template when instantiating it (be it the name of the template itself or an |
| 688 | + alias to the template), which causes problems when you don't have that. |
| 689 | +
|
| 690 | + Specifically, if the template is within an $(LREF AliasSeq) - e.g. |
| 691 | + $(D Templates[0]!Args) - or it's the result of another template - e.g |
| 692 | + $(D Foo!Bar!Baz) - the instantiation is illegal. This leaves two ways to |
| 693 | + solve the problem. The first is to create an alias, e.g. |
| 694 | + --- |
| 695 | + alias Template = Templates[0]; |
| 696 | + enum result = Template!Args; |
| 697 | +
|
| 698 | + alias Partial = Foo!Bar; |
| 699 | + alias T = Partial!Baz; |
| 700 | + --- |
| 701 | + The second is to use Instantiate, e.g. |
| 702 | + --- |
| 703 | + enum result = Instantiate!(Templates[0], Args); |
| 704 | +
|
| 705 | + alias T = Instiantiate!(Foo!Bar, Baz); |
| 706 | + --- |
| 707 | +
|
| 708 | + Of course, the downside to this is that it adds an additional template |
| 709 | + instantiation, but it avoids creating an alias just to be able to |
| 710 | + instantiate a template. So, whether it makes sense to use Instantiate |
| 711 | + instead of an alias naturally depends on the situation, but without it, |
| 712 | + we'd be forced to create aliases even in situations where that's |
| 713 | + problematic. |
| 714 | +
|
| 715 | + See_Also: |
| 716 | + $(LREF ApplyLeft) |
| 717 | + $(LREF ApplyRight) |
| 718 | + +/ |
| 719 | +alias Instantiate(alias Template, Args...) = Template!Args; |
| 720 | + |
| 721 | +/// |
| 722 | +@safe unittest |
| 723 | +{ |
| 724 | + import phobos.sys.traits : ConstOf, isImplicitlyConvertible, isSameType, isInteger; |
| 725 | + |
| 726 | + alias Templates = AliasSeq!(isImplicitlyConvertible!int, |
| 727 | + isSameType!string, |
| 728 | + isInteger, |
| 729 | + ConstOf); |
| 730 | + |
| 731 | + // Templates[0]!long does not compile, because the compiler can't parse it. |
| 732 | + |
| 733 | + static assert( Instantiate!(Templates[0], long)); |
| 734 | + static assert(!Instantiate!(Templates[0], string)); |
| 735 | + |
| 736 | + static assert(!Instantiate!(Templates[1], long)); |
| 737 | + static assert( Instantiate!(Templates[1], string)); |
| 738 | + |
| 739 | + static assert( Instantiate!(Templates[2], long)); |
| 740 | + static assert(!Instantiate!(Templates[2], string)); |
| 741 | + |
| 742 | + static assert(is(Instantiate!(Templates[3], int) == const int)); |
| 743 | + static assert(is(Instantiate!(Templates[3], double) == const double)); |
| 744 | +} |
| 745 | + |
| 746 | +/// |
| 747 | +@safe unittest |
| 748 | +{ |
| 749 | + template hasMember(string member) |
| 750 | + { |
| 751 | + enum hasMember(T) = __traits(hasMember, T, member); |
| 752 | + } |
| 753 | + |
| 754 | + struct S |
| 755 | + { |
| 756 | + int foo; |
| 757 | + } |
| 758 | + |
| 759 | + // hasMember!"foo"!S does not compile, |
| 760 | + // because having multiple ! arguments is not allowed. |
| 761 | + |
| 762 | + static assert( Instantiate!(hasMember!"foo", S)); |
| 763 | + static assert(!Instantiate!(hasMember!"bar", S)); |
| 764 | +} |
| 765 | + |
| 766 | +/++ |
| 767 | + Instantiate also allows us to do template instantations via templates that |
| 768 | + take other templates as arguments. |
| 769 | + +/ |
| 770 | +@safe unittest |
| 771 | +{ |
| 772 | + import phobos.sys.traits : isInteger, isNumeric, isUnsignedInteger; |
| 773 | + |
| 774 | + alias Results = Map!(ApplyRight!(Instantiate, int), |
| 775 | + isInteger, isNumeric, isUnsignedInteger); |
| 776 | + |
| 777 | + static assert([Results] == [true, true, false]); |
| 778 | +} |
| 779 | + |
| 780 | +/++ |
| 781 | + ApplyLeft does a |
| 782 | + $(LINK2 http://en.wikipedia.org/wiki/Partial_application, partial application) |
| 783 | + of its arguments, providing a way to bind a set of arguments to the given |
| 784 | + template while delaying actually instantiating that template until the full |
| 785 | + set of arguments is provided. The "Left" in the name indicates that the |
| 786 | + initial arguments are one the left-hand side of the argument list |
| 787 | + when the given template is instantiated. |
| 788 | +
|
| 789 | + Essentially, ApplyLeft results in a template that stores Template and Args, |
| 790 | + and when that intermediate template is instantiated in turn, it instantiates |
| 791 | + Template with Args on the left-hand side of the arguments to Template and |
| 792 | + with the arguments to the intermediate template on the right-hand side - |
| 793 | + i.e. Args is applied to the left when instantiating Template. |
| 794 | +
|
| 795 | + So, if you have |
| 796 | + --- |
| 797 | + alias Intermediate = ApplyLeft!(MyTemplate, Arg1, Arg2); |
| 798 | + alias Result = Intermediate!(ArgA, ArgB); |
| 799 | + --- |
| 800 | + then that is equivalent to |
| 801 | + --- |
| 802 | + alias Result = MyTemplate!(Arg1, Arg2, ArgA, ArgB); |
| 803 | + --- |
| 804 | + with the difference being that you have an intermediate template which can |
| 805 | + be stored or passed to other templates (e.g. as a template predicate). |
| 806 | +
|
| 807 | + The only difference between ApplyLeft and $(LREF ApplyRight) is whether |
| 808 | + Args is on the left-hand or the right-hand side of the arguments given to |
| 809 | + Template when it's instantiated. |
| 810 | +
|
| 811 | + Note that in many cases, the need for ApplyLeft can be eliminated by making |
| 812 | + it so that Template can be partially instantiated. E.G. |
| 813 | + --- |
| 814 | + enum isSameType(T, U) = is(T == U); |
| 815 | +
|
| 816 | + template isSameType(T) |
| 817 | + { |
| 818 | + enum isSameType(U) = is(T == U); |
| 819 | + } |
| 820 | + --- |
| 821 | + makes it so that both of these work |
| 822 | + --- |
| 823 | + enum result1 = isSameType!(int, long); |
| 824 | +
|
| 825 | + alias Intermediate = isSameType!int; |
| 826 | + enum result2 = Intermediate!long; |
| 827 | + --- |
| 828 | + whereas if only the two argument version is provided, then ApplyLeft would |
| 829 | + be required for the second use case. |
| 830 | + --- |
| 831 | + enum result1 = isSameType!(int, long); |
| 832 | +
|
| 833 | + alias Intermediate = ApplyLeft!(isSameType, int); |
| 834 | + enum result2 = Intermediate!long; |
| 835 | + --- |
| 836 | +
|
| 837 | + See_Also: |
| 838 | + $(LREF ApplyRight) |
| 839 | + $(LREF Instantiate) |
| 840 | + +/ |
| 841 | +template ApplyLeft(alias Template, Args...) |
| 842 | +{ |
| 843 | + alias ApplyLeft(Right...) = Template!(Args, Right); |
| 844 | +} |
| 845 | + |
| 846 | +/// |
| 847 | +@safe unittest |
| 848 | +{ |
| 849 | + { |
| 850 | + alias Intermediate = ApplyLeft!(AliasSeq, ubyte, ushort, uint); |
| 851 | + alias Result = Intermediate!(char, wchar, dchar); |
| 852 | + static assert(is(Result == AliasSeq!(ubyte, ushort, uint, char, wchar, dchar))); |
| 853 | + } |
| 854 | + { |
| 855 | + enum isImplicitlyConvertible(T, U) = is(T : U); |
| 856 | + |
| 857 | + // i.e. isImplicitlyConvertible!(ubyte, T) is what all is checking for |
| 858 | + // with each element in the AliasSeq. |
| 859 | + static assert(all!(ApplyLeft!(isImplicitlyConvertible, ubyte), |
| 860 | + short, ushort, int, uint, long, ulong)); |
| 861 | + } |
| 862 | + { |
| 863 | + enum hasMember(T, string member) = __traits(hasMember, T, member); |
| 864 | + |
| 865 | + struct S |
| 866 | + { |
| 867 | + bool foo; |
| 868 | + int bar; |
| 869 | + string baz; |
| 870 | + } |
| 871 | + |
| 872 | + static assert(all!(ApplyLeft!(hasMember, S), "foo", "bar", "baz")); |
| 873 | + } |
| 874 | + { |
| 875 | + // Either set of arguments can be empty, since the first set is just |
| 876 | + // stored to be applied later, and then when the intermediate template |
| 877 | + // is instantiated, they're all applied to the given template in the |
| 878 | + // requested order. However, whether the code compiles when |
| 879 | + // instantiating the intermediate template depends on what kinds of |
| 880 | + // arguments the given template requires. |
| 881 | + |
| 882 | + alias Intermediate1 = ApplyLeft!AliasSeq; |
| 883 | + static assert(Intermediate1!().length == 0); |
| 884 | + |
| 885 | + enum isSameSize(T, U) = T.sizeof == U.sizeof; |
| 886 | + |
| 887 | + alias Intermediate2 = ApplyLeft!(isSameSize, int); |
| 888 | + static assert(Intermediate2!uint); |
| 889 | + |
| 890 | + alias Intermediate3 = ApplyLeft!(isSameSize, int, uint); |
| 891 | + static assert(Intermediate3!()); |
| 892 | + |
| 893 | + alias Intermediate4 = ApplyLeft!(isSameSize); |
| 894 | + static assert(Intermediate4!(int, uint)); |
| 895 | + |
| 896 | + // isSameSize requires two arguments |
| 897 | + alias Intermediate5 = ApplyLeft!isSameSize; |
| 898 | + static assert(!__traits(compiles, Intermediate5!())); |
| 899 | + static assert(!__traits(compiles, Intermediate5!int)); |
| 900 | + static assert(!__traits(compiles, Intermediate5!(int, long, string))); |
| 901 | + } |
| 902 | +} |
| 903 | + |
| 904 | +/++ |
| 905 | + ApplyRight does a |
| 906 | + $(LINK2 http://en.wikipedia.org/wiki/Partial_application, partial application) |
| 907 | + of its arguments, providing a way to bind a set of arguments to the given |
| 908 | + template while delaying actually instantiating that template until the full |
| 909 | + set of arguments is provided. The "Right" in the name indicates that the |
| 910 | + initial arguments are one the right-hand side of the argument list |
| 911 | + when the given template is instantiated. |
| 912 | +
|
| 913 | + Essentially, ApplyRight results in a template that stores Template and |
| 914 | + Args, and when that intermediate template is instantiated in turn, it |
| 915 | + instantiates Template with the arguments to the intermediate template on |
| 916 | + the left-hand side and with Args on the right-hand side - i.e. Args is |
| 917 | + applied to the right when instantiating Template. |
| 918 | +
|
| 919 | + So, if you have |
| 920 | + --- |
| 921 | + alias Intermediate = ApplyRight!(MyTemplate, Arg1, Arg2); |
| 922 | + alias Result = Intermediate!(ArgA, ArgB); |
| 923 | + --- |
| 924 | + then that is equivalent to |
| 925 | + --- |
| 926 | + alias Result = MyTemplate!(ArgA, ArgB, Arg1, Arg2); |
| 927 | + --- |
| 928 | + with the difference being that you have an intermediate template which can |
| 929 | + be stored or passed to other templates (e.g. as a template predicate). |
| 930 | +
|
| 931 | + The only difference between $(LREF ApplyLeft) and ApplyRight is whether |
| 932 | + Args is on the left-hand or the right-hand side of the arguments given to |
| 933 | + Template when it's instantiated. |
| 934 | +
|
| 935 | + See_Also: |
| 936 | + $(LREF ApplyLeft) |
| 937 | + $(LREF Instantiate) |
| 938 | + +/ |
| 939 | +template ApplyRight(alias Template, Args...) |
| 940 | +{ |
| 941 | + alias ApplyRight(Left...) = Template!(Left, Args); |
| 942 | +} |
| 943 | + |
| 944 | +/// |
| 945 | +@safe unittest |
| 946 | +{ |
| 947 | + { |
| 948 | + alias Intermediate = ApplyRight!(AliasSeq, ubyte, ushort, uint); |
| 949 | + alias Result = Intermediate!(char, wchar, dchar); |
| 950 | + static assert(is(Result == AliasSeq!(char, wchar, dchar, ubyte, ushort, uint))); |
| 951 | + } |
| 952 | + { |
| 953 | + enum isImplicitlyConvertible(T, U) = is(T : U); |
| 954 | + |
| 955 | + // i.e. isImplicitlyConvertible!(T, short) is what Filter is checking |
| 956 | + // for with each element in the AliasSeq. |
| 957 | + static assert(is(Filter!(ApplyRight!(isImplicitlyConvertible, short), |
| 958 | + ubyte, string, short, float, int) == |
| 959 | + AliasSeq!(ubyte, short))); |
| 960 | + } |
| 961 | + { |
| 962 | + enum hasMember(T, string member) = __traits(hasMember, T, member); |
| 963 | + |
| 964 | + struct S1 |
| 965 | + { |
| 966 | + bool foo; |
| 967 | + } |
| 968 | + |
| 969 | + struct S2 |
| 970 | + { |
| 971 | + int foo() { return 42; } |
| 972 | + } |
| 973 | + |
| 974 | + static assert(all!(ApplyRight!(hasMember, "foo"), S1, S2)); |
| 975 | + } |
| 976 | + { |
| 977 | + // Either set of arguments can be empty, since the first set is just |
| 978 | + // stored to be applied later, and then when the intermediate template |
| 979 | + // is instantiated, they're all applied to the given template in the |
| 980 | + // requested order. However, whether the code compiles when |
| 981 | + // instantiating the intermediate template depends on what kinds of |
| 982 | + // arguments the given template requires. |
| 983 | + |
| 984 | + alias Intermediate1 = ApplyRight!AliasSeq; |
| 985 | + static assert(Intermediate1!().length == 0); |
| 986 | + |
| 987 | + enum isSameSize(T, U) = T.sizeof == U.sizeof; |
| 988 | + |
| 989 | + alias Intermediate2 = ApplyRight!(isSameSize, int); |
| 990 | + static assert(Intermediate2!uint); |
| 991 | + |
| 992 | + alias Intermediate3 = ApplyRight!(isSameSize, int, uint); |
| 993 | + static assert(Intermediate3!()); |
| 994 | + |
| 995 | + alias Intermediate4 = ApplyRight!(isSameSize); |
| 996 | + static assert(Intermediate4!(int, uint)); |
| 997 | + |
| 998 | + // isSameSize requires two arguments |
| 999 | + alias Intermediate5 = ApplyRight!isSameSize; |
| 1000 | + static assert(!__traits(compiles, Intermediate5!())); |
| 1001 | + static assert(!__traits(compiles, Intermediate5!int)); |
| 1002 | + } |
| 1003 | +} |
0 commit comments