This repository was archived by the owner on Jan 15, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 530
/
Copy pathtrain_classification.py
529 lines (458 loc) · 22.7 KB
/
train_classification.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
import gluonnlp
from tensorboardX import SummaryWriter
import numpy as np
import mxnet as mx
import json
import random
import pandas as pd
import mxnet.numpy_extension as _mx_npx
import os
import json
import logging
import time
import argparse
import copy
from mxnet.gluon.metric import Accuracy, F1, MCC, PearsonCorrelation, CompositeEvalMetric
from classification_utils import get_task
import matplotlib.pyplot as plt
from tqdm import tqdm
from mxnet import gluon
from gluonnlp.data.sampler import SplitSampler
from mxnet.gluon import nn
from gluonnlp.models import get_backbone
from gluonnlp.utils.parameter import clip_grad_global_norm, count_parameters, deduplicate_param_dict
from gluonnlp.utils.preprocessing import get_trimmed_lengths
from gluonnlp.utils.misc import get_mxnet_visible_ctx, grouper, repeat, logging_config
from mxnet.gluon.data import batchify as bf
from mxnet.gluon.data import DataLoader
from mxnet.lr_scheduler import PolyScheduler
from gluonnlp.utils import set_seed
from gluonnlp.utils.misc import init_comm, parse_ctx
try:
import horovod.mxnet as hvd
except ImportError:
pass
from classification import TextPredictionNet
mx.npx.set_np()
CACHE_PATH = os.path.realpath(os.path.join(os.path.realpath(__file__), '..', 'cached'))
if not os.path.exists(CACHE_PATH):
os.makedirs(CACHE_PATH, exist_ok=True)
def parse_args():
parser = argparse.ArgumentParser(
description='classification example. '
'We fine-tune the pretrained model on GLUE dataset to do different taks.')
parser.add_argument('--model_name', type=str, default='google_en_uncased_bert_base',
help='Name of the pretrained model.')
parser.add_argument('--task_name', type=str, default='STS',
help='Name of classification taks')
parser.add_argument('--lr', type=float, default=5E-4,
help='Initial learning rate. default is 2e-5')
parser.add_argument('--comm_backend', type=str, default='device',
choices=['horovod', 'dist_sync_device', 'device'],
help='Communication backend.')
parser.add_argument('--gpus', type=str, default='0',
help='list of gpus to run, e.g. 0 or 0,2,5. -1 means using cpu.')
parser.add_argument('--epochs', type=int, default=3,
help='Number of epochs, default is 3')
parser.add_argument('--do_train', action='store_true',
help='do training.')
parser.add_argument('--do_eval', action='store_true',
help='do eval.')
parser.add_argument('--param_checkpoint', type=str, default=None,
help='The parameter checkpoint for evaluating the model')
parser.add_argument('--backbone_path', type=str, default=None,
help='The parameter checkpoint of backbone model')
parser.add_argument('--overwrite_cache', action='store_true',
help='Whether to overwrite the feature cache.')
parser.add_argument('--num_accumulated', type=int, default=1,
help='The number of batches for gradients accumulation to '
'simulate large batch size.')
parser.add_argument('--output_dir', type=str, default='cls_dir',
help='The output directory where the model params will be written.'
' default is cls_dir')
parser.add_argument('--log_interval', type=int, default=-1,
help='The logging interval for training')
parser.add_argument('--optimizer', type=str, default='adamw',
help='The optimization algorithm')
parser.add_argument('--batch_size', type=int, default=32,
help='Batch size. Number of examples per gpu in a minibatch. default is 64')
parser.add_argument(
'--seed', type=int, default=2, help='Random seed')
parser.add_argument('--wd', type=float, default=0.01, help='weight decay')
parser.add_argument('--max_grad_norm', type=float, default=1.0,
help='Max gradient norm.')
parser.add_argument('--train_dir', type=str, default=None,
help='the path to training dataset')
parser.add_argument('--eval_dir', type=str, default=None,
help='the path to training dataset')
parser.add_argument('--warmup_ratio', type=float, default=0.1,
help='Ratio of warmup steps in the learning rate scheduler.')
parser.add_argument('--method', type=str, default='full', choices=['full', 'bias', 'subbias', 'adapter'],
help='different finetune method')
args = parser.parse_args()
return args
def change_adapter_cfg(cfg, task):
adapter_config = {'adapter_fusion':False,
'task_names':[task.task_name],
task.task_name:{'type':'Basic','unit':64}}
cfg.defrost()
cfg.MODEL.use_adapter = True
cfg.MODEL.adapter_config = json.dumps(adapter_config)
cfg.freeze()
return cfg
def get_network(model_name,
ctx_l,
method='full',
checkpoint_path=None,
backbone_path=None,
task=None):
"""
Get the network that fine-tune the Question Answering Task
"""
use_segmentation = 'roberta' not in model_name and 'xlmr' not in model_name
Model, cfg, tokenizer, download_params_path, _ = \
get_backbone(model_name, load_backbone=not backbone_path)
if method == 'adapter':
cfg = change_adapter_cfg(cfg, task)
backbone = Model.from_cfg(cfg)
# Load local backbone parameters if backbone_path provided.
# Otherwise, download backbone parameters from gluon zoo.
backbone_params_path = backbone_path if backbone_path else download_params_path
if checkpoint_path is None:
backbone.load_parameters(backbone_params_path, ignore_extra=True, allow_missing=True,
ctx=ctx_l, cast_dtype=True)
num_params, num_fixed_params \
= count_parameters(deduplicate_param_dict(backbone.collect_params()))
logging.info(
'Loading Backbone Model from {}, with total/fixd parameters={}/{}'.format(
backbone_params_path, num_params, num_fixed_params))
classify_net = TextPredictionNet(backbone, task.class_num)
if checkpoint_path is None:
# Ignore the UserWarning during initialization,
# There is no need to re-initialize the parameters of backbone
classify_net.initialize(ctx=ctx_l)
else:
classify_net.load_parameters(checkpoint_path, ctx=ctx_l, cast_dtype=True)
classify_net.hybridize()
return cfg, tokenizer, classify_net, use_segmentation
def project_label(label, task):
projected_label = copy.copy(label)
for i in range(len(label)):
projected_label[i] = task.proj_label[label[i]]
return projected_label
def preprocess_data(df, feature_columns, label_column, tokenizer,
max_length=128, use_label=True, use_tqdm=True, task=None):
out = []
if isinstance(feature_columns, str):
feature_columns = [feature_columns]
cls_id = tokenizer.vocab.cls_id
sep_id = tokenizer.vocab.sep_id
iterator = tqdm(df.iterrows(), total=len(df)) if use_tqdm else df.iterrows()
for idx, row in iterator:
# Token IDs = [CLS] token_ids1 [SEP] token_ids2 [SEP]
# Segment IDs = 0 0 0 1 1
encoded_text_l = [tokenizer.encode(row[col_name], int)
for col_name in feature_columns]
trimmed_lengths = get_trimmed_lengths([len(ele) for ele in encoded_text_l],
max_length=max_length - len(feature_columns) - 1,
do_merge=True)
token_ids = [cls_id] + sum([ele[:length] + [sep_id]
for length, ele in zip(trimmed_lengths, encoded_text_l)], [])
token_types = [0] + sum([[i % 2] * (length + 1)
for i, length in enumerate(trimmed_lengths)], [])
valid_length = len(token_ids)
feature = (token_ids, token_types, valid_length)
if use_label:
label = row[label_column]
if task.task_name != 'sts':
label = task.proj_label[label]
out.append((feature, label))
else:
out.append(feature)
return out
def get_task_data(args, task, tokenizer, segment):
feature_column = task.feature_column
label_column = task.label_column
if segment == 'train':
input_df = task.raw_train_data
file_name = args.train_dir.split('/')[-1]
else:
input_df = task.raw_eval_data
file_name = args.eval_dir.split('/')[-1]
data_cache_path = os.path.join(CACHE_PATH,
'{}_{}_{}_{}.ndjson'.format(
segment, args.model_name, task.task_name, file_name))
if os.path.exists(data_cache_path) and not args.overwrite_cache:
processed_data = []
with open(data_cache_path, 'r') as f:
for line in f:
processed_data.append(json.loads(line))
logging.info('Found cached data features, load from {}'.format(data_cache_path))
else:
processed_data = preprocess_data(input_df, feature_column, label_column,
tokenizer, use_label=True, task=task)
with open(data_cache_path, 'w') as f:
for feature in processed_data:
f.write(json.dumps(feature) + '\n')
label = input_df[label_column]
if task.task_name != 'sts':
label = project_label(label, task)
return processed_data, label
def train(args):
store, num_workers, rank, local_rank, is_master_node, ctx_l = init_comm(
args.comm_backend, args.gpus)
task = get_task(args.task_name, args.train_dir, args.eval_dir)
#setup_logging(args, local_rank)
#random seed
set_seed(args.seed)
level = logging.INFO
if not os.path.exists(args.output_dir):
os.mkdir(args.output_dir)
detail_dir = os.path.join(args.output_dir, args.task_name)
if not os.path.exists(detail_dir):
os.mkdir(detail_dir)
logging_config(detail_dir,
name='train_{}_{}_'.format(args.task_name, args.model_name) + str(rank), # avoid race
level=level,
console=(local_rank == 0))
logging.info(args)
cfg, tokenizer, classify_net, use_segmentation = \
get_network(args.model_name, ctx_l, args.method,
args.param_checkpoint,
args.backbone_path,
task)
logging.info('Prepare training data')
train_data, _ = get_task_data(args, task, tokenizer, segment='train')
train_batchify = bf.Group(bf.Group(bf.Pad(), bf.Pad(), bf.Stack()),
bf.Stack())
rs = np.random.RandomState(100)
rs.shuffle(train_data)
sampler = SplitSampler(
len(train_data),
num_parts=num_workers,
part_index=rank,
even_size=True)
dataloader = DataLoader(train_data,
batch_size=args.batch_size,
batchify_fn=train_batchify,
num_workers=0,
sampler=sampler)
if args.method == 'full':
target_params_name = classify_net.collect_params().keys()
elif args.method == 'bias':
target_params_name = [key
for key in classify_net.collect_params() if
key.endswith('bias') or key.endswith('beta') or 'out_proj' in key]
elif args.method == 'adapter':
target_params_name = [key
for key in classify_net.collect_params() if
'adapter' in key or 'out_proj' in key]
for name in classify_net.collect_params():
if name not in target_params_name:
classify_net.collect_params()[name].grad_req = 'null'
target_params = {name:classify_net.collect_params()[name] for name in target_params_name}
param_dict = classify_net.collect_params()
# Do not apply weight decay to all the LayerNorm and bias
for _, v in classify_net.collect_params('.*beta|.*gamma|.*bias').items():
v.wd_mult = 0.0
# Set grad_req if gradient accumulation is required
params = [p for p in param_dict.values() if p.grad_req != 'null']
num_accumulated = args.num_accumulated
if num_accumulated > 1:
logging.info('Using gradient accumulation. Effective global batch size = {}'
.format(num_accumulated * args.batch_size * len(ctx_l) * num_workers))
for p in params:
p.grad_req = 'add'
if local_rank == 0:
writer = SummaryWriter(logdir=os.path.join(args.output_dir,
args.task_name + '_tensorboard_' +
str(args.lr) + '_' + str(args.epochs) + '_' + str(args.method)))
if args.comm_backend == 'horovod':
# Horovod: fetch and broadcast parameters
hvd.broadcast_parameters(param_dict, root_rank=0)
epoch_size = (len(dataloader) + len(ctx_l) - 1) // len(ctx_l)
max_update = epoch_size * args.epochs
warmup_steps = int(np.ceil(max_update * args.warmup_ratio))
dataloader = grouper(repeat(dataloader), len(ctx_l))
lr_scheduler = PolyScheduler(max_update=max_update,
base_lr=args.lr,
warmup_begin_lr=0.0,
pwr=1,
final_lr=0.0,
warmup_steps=warmup_steps,
warmup_mode='linear')
optimizer_params = {'learning_rate': args.lr,
'wd': args.wd,
'lr_scheduler': lr_scheduler}
if args.comm_backend == 'horovod':
trainer = hvd.DistributedTrainer(target_params, args.optimizer, optimizer_params)
else:
trainer = mx.gluon.Trainer(target_params,
'adamw',
optimizer_params)
if args.task_name == 'sts':
loss_function = gluon.loss.L2Loss()
else:
loss_function = gluon.loss.SoftmaxCELoss()
metrics = task.metric
#prepare loss function
log_loss = 0
log_gnorm = 0
log_step = 0
if args.log_interval > 0:
log_interval = args.log_interval
else:
log_interval = int(epoch_size * 0.5)
start_time = time.time()
total_loss = 0
total_grad = 0
total_step = 0
for i in range(max_update):
sample_l = next(dataloader)
loss_l = []
for sample, ctx in zip(sample_l, ctx_l):
(token_ids, token_types, valid_length), label = sample
# Move to the corresponding context
token_ids = mx.np.array(token_ids, ctx=ctx)
token_types = mx.np.array(token_types, ctx=ctx)
valid_length = mx.np.array(valid_length, ctx=ctx)
label = mx.np.array(label, ctx=ctx)
with mx.autograd.record():
scores = classify_net(token_ids, token_types, valid_length)
loss = loss_function(scores, label).mean() / len(ctx_l)
loss_l.append(loss)
if task.task_name == 'sts':
label = label.reshape((-1, 1))
for metric in metrics:
metric.update([label], [scores])
for loss in loss_l:
loss.backward()
trainer.allreduce_grads()
# Begin Norm Clipping
total_norm, ratio, is_finite = clip_grad_global_norm(params, args.max_grad_norm)
trainer.update(1.0)
step_loss = sum([loss.asnumpy() for loss in loss_l])
log_loss += step_loss
log_gnorm += total_norm
log_step += 1
total_step += 1
total_loss += step_loss
total_grad += total_norm
if local_rank == 0:
writer.add_scalar('train_loss_avg', total_loss * 1.0 / total_step, i)
writer.add_scalar('lr', trainer.learning_rate, i)
writer.add_scalar('train_loss', step_loss, i)
writer.add_scalar('grad_norm_avg', total_grad * 1.0 / total_step, i)
writer.add_scalar('grad_norm', total_norm, i)
for metric in metrics:
metric_name, result = metric.get()
writer.add_scalar(metric_name, result, i)
if log_step >= log_interval or i == max_update - 1:
curr_time = time.time()
metric_log = ''
for metric in metrics:
metric_nm, val = metric.get()
metric_log += ', {}: = {}'.format(metric_nm, val)
logging.info('[Iter {} / {}] avg {} = {:.2f}, avg gradient norm = {:.2f}, lr = {}, ETA={:.2f}h'.format(i + 1,
max_update,
'loss',
log_loss / log_step,
log_gnorm / log_step,
trainer.learning_rate,
(max_update-i)*((curr_time - start_time)/i)/3600)
+ metric_log)
log_loss = 0
log_gnorm = 0
log_step = 0
if local_rank == 0 and (i == max_update - 1 or i%(max_update//args.epochs) == 0 and i>0):
ckpt_name = '{}_{}_{}_{}.params'.format(args.model_name,
args.task_name,
(i + 1),
args.method)
tmp_params = classify_net._collect_params_with_prefix()
params_saved = os.path.join(detail_dir, ckpt_name)
arg_dict = {key: tmp_params[key]._reduce() for key in target_params}
_mx_npx.savez(params_saved, **arg_dict)
logging.info('Params saved in: {}'.format(params_saved))
for metric in metrics:
metric.reset()
end_time = time.time()
logging.info('Total costs:{}'.format(end_time - start_time))
def evaluate(args):
store, num_workers, rank, local_rank, is_master_node, ctx_l = init_comm(
args.comm_backend, args.gpus)
# setup_logging(args, local_rank)
task = get_task(args.task_name, args.train_dir, args.eval_dir)
level = logging.INFO
detail_dir = os.path.join(args.output_dir, args.task_name)
if not os.path.exists(detail_dir):
os.mkdir(detail_dir)
logging_config(detail_dir,
name='train_{}_{}_'.format(args.task_name, args.model_name) + str(rank), # avoid race
level=level,
console=(local_rank == 0))
if rank != 0:
logging.info('Skipping node {}'.format(rank))
return
ctx_l = parse_ctx(args.gpus)
logging.info(
'Srarting inference without horovod on the first node on device {}'.format(
str(ctx_l)))
cfg, tokenizer, classify_net, use_segmentation = \
get_network(args.model_name, ctx_l, args.method,
args.param_checkpoint,
args.backbone_path,
task)
candidate_ckpt = []
detail_dir = os.path.join(args.output_dir, args.task_name)
for name in os.listdir(detail_dir):
if name.endswith(args.method + '.params') and args.task_name in name and args.model_name in name:
candidate_ckpt.append(os.path.join(detail_dir, name))
candidate_ckpt.sort(reverse=False)
best_ckpt = {}
metrics = task.metric
def evaluate_by_ckpt(ckpt_name, best_ckpt):
loaded = _mx_npx.load(ckpt_name)
full_dict = {'params': loaded, 'filename': ckpt_name}
classify_net.load_dict(full_dict, ctx_l, allow_missing=True,
ignore_extra=True, cast_dtype=True)
logging.info('Prepare dev data')
dev_data, label = get_task_data(args, task, tokenizer, segment='eval')
dev_batchify = bf.Group(bf.Group(bf.Pad(), bf.Pad(), bf.Stack()), bf.Stack())
dataloader = DataLoader(dev_data,
batch_size=args.batch_size,
batchify_fn=dev_batchify,
shuffle=False)
for sample_l in grouper(dataloader, len(ctx_l)):
for sample, ctx in zip(sample_l, ctx_l):
if sample is None:
continue
(token_ids, token_types, valid_length), label = sample
token_ids = mx.np.array(token_ids, ctx=ctx)
token_types = mx.np.array(token_types, ctx=ctx)
valid_length = mx.np.array(valid_length, ctx=ctx)
scores = classify_net(token_ids, token_types, valid_length)
if task.task_name == 'sts':
label = label.reshape((-1,1))
for metric in metrics:
metric.update([label], [scores])
#pred.append(scores)
for metric in metrics:
metric_name, result = metric.get()
logging.info('checkpoint {} get result: {}:{}'.format(ckpt_name, metric_name, result))
if best_ckpt.get(metric_name, [0, ''])[0]<result:
best_ckpt[metric_name] = [result, ckpt_name]
for metric in metrics:
metric.reset()
for ckpt_name in candidate_ckpt:
evaluate_by_ckpt(ckpt_name, best_ckpt)
for metric_name in best_ckpt:
logging.info('best result on metric {}: is {}, and on checkpoint {}'.format(metric_name, best_ckpt[metric_name][0],
best_ckpt[metric_name][1]))
if __name__ == '__main__':
os.environ['MXNET_GPU_MEM_POOL_TYPE'] = 'Round'
args = parse_args()
if args.do_train:
train(args)
if args.do_eval:
evaluate(args)