-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_pgn.py
1382 lines (1164 loc) · 66.1 KB
/
train_pgn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import argparse
import logging
import os
import pickle
import shutil
import tempfile
import time
from collections import defaultdict
from contextlib import ExitStack
from pathlib import Path
from typing import Optional
import imageio
import numpy as np
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.data
from torch.utils.tensorboard import SummaryWriter
from tqdm.auto import tqdm
from archs.deep_image_prior.skip import skip, default_skip_params
from archs.perceptual_loss import PerceptualLoss, PerceptualLossDeep
from dataloader import get_dataloaders
from image2stylegan.decoder_from_latents import DecoderFromLatents
from image2stylegan.model import StyledGenerator
from gen_envs import AutoencoderEnv
from losses import ScaledMSELoss, VggOneStepLoss, VggGradLoss, symmetric_jacobian_loss, total_variation_loss
from pgn import Pgn
from ssim import SSIM
from utils import (
VideoWriter, MovingAverage, Timer,
Normalizer, set_random_seeds, get_grad_norms, make_frame, torch_batch_to_numpy, percentile,
l1_loss_batchwise, mse_loss_batchwise,
ProcessGroup, DistributedSummaryWrapper
)
try:
from apex import amp
except ImportError:
amp = None
def get_multiple_percentiles(t, percentiles=(0, 1, 50, 99, 100)):
return {
q: percentile(t, q)
for q in percentiles
}
def get_grad_metrics(grad_pred, grad_true=None):
def batchwise_flatten(tensor):
b = tensor.shape[0]
return tensor.reshape(b, -1)
def l2_norm(a):
return torch.norm(batchwise_flatten(a), p=2, dim=1)
metrics = {}
metrics['grads_pred_norm'] = l2_norm(grad_pred)
metrics.update({
f'grads_pred_q{q}': p
for (q, p) in get_multiple_percentiles(grad_pred).items()
})
if grad_true is not None:
metrics['grads_true_norm'] = l2_norm(grad_true)
inf = torch.tensor(np.inf, device=metrics['grads_true_norm'].device, dtype=metrics['grads_true_norm'].dtype)
metrics['grads_norm_ratio'] = torch.where(
metrics['grads_true_norm'] != 0,
metrics['grads_pred_norm'] / metrics['grads_true_norm'],
inf,
)
metrics['grads_diff_norm'] = l2_norm(grad_pred - grad_true)
metrics['loss_norm'] = torch.where(
metrics['grads_true_norm'] != 0,
metrics['grads_diff_norm'] / metrics['grads_true_norm'],
inf,
)
metrics['cosine_similarity'] = F.cosine_similarity(
batchwise_flatten(grad_pred),
batchwise_flatten(grad_true),
)
metrics.update({
f'grads_true_q{q}': p
for (q, p) in get_multiple_percentiles(grad_true).items()
})
return metrics
def forward_backward(func, x):
x = x.detach().requires_grad_()
with torch.enable_grad():
y = func(x)
y.sum(dim=0).backward()
return x.grad, y
def setup_dirs(args):
args.run_dir.mkdir(exist_ok=True, parents=True)
if next(args.run_dir.iterdir(), None) is not None:
logging.warning(f'Run dir {args.run_dir} is not empty!')
tb_dir = args.run_dir / 'tb'
log_dir = args.run_dir / 'logs'
model_dir = args.run_dir / 'models'
tb_dir.mkdir(exist_ok=True)
log_dir.mkdir(exist_ok=True)
model_dir.mkdir(exist_ok=True)
return tb_dir, log_dir, model_dir
def setup_args(args):
if args.amp and amp is None:
raise RuntimeError('--amp is provided but apex.amp is unavailable')
if args.debug:
args.tqdm = True
args.batches_per_train_epoch = 8
args.valid_num_iter = 100
args.save_each = 1
if args.valid_only:
args.tqdm = True
args.workers = 0
if args.pgn_loss_grad_coef == 0 and args.pgn_backbone_to_grad != 'proxy':
logging.warning('Grad coefficient is zero, forcing PGN proxy mode')
args.pgn_backbone_to_grad = 'proxy'
num_autoencoders = len(args.ae_max_layer)
if args.resume_dir is not None:
assert args.resume_epoch is not None
args.start_epoch = args.resume_epoch + 1
args.pgn_checkpoint = args.resume_dir / f'{args.resume_epoch}.pth'
args.pgn_checkpoint_opt = args.resume_dir / f'{args.resume_epoch}_opt.pth'
args.ae_checkpoints = [
args.resume_dir / f'{args.resume_epoch}_ae_{i}.pth' for i in range(num_autoencoders)]
args.ae_checkpoints_opt = [
args.resume_dir / f'{args.resume_epoch}_ae_{i}_opt.pth' for i in range(num_autoencoders)]
def parse_checkpoint_list(checkpoints):
if checkpoints is None:
return [None] * num_autoencoders
else:
return [
(None if ckpt_path == Path('None') else ckpt_path)
for ckpt_path in checkpoints
]
args.ae_checkpoints = parse_checkpoint_list(args.ae_checkpoints)
args.ae_checkpoints_opt = parse_checkpoint_list(args.ae_checkpoints_opt)
assert len(args.ae_max_layer) == len(args.ae_checkpoints) == len(args.ae_checkpoints_opt)
args.distributed = not args.no_distributed
if args.distributed:
if args.world_size is None:
if args.dist_init_method == "env://":
args.world_size = int(os.environ["WORLD_SIZE"])
logging.debug(f'Read WORLD_SIZE={args.world_size} from environment variable')
else:
args.world_size = torch.cuda.device_count()
logging.debug(f'Detected {args.world_size} CUDA devices')
if args.world_size > 1:
logging.warning(f'Disabling tqdm in distributed mode with world_size={args.world_size}')
args.tqdm = False
def load_networks(args, pgn_device, ae_device, vgg_device):
logging.info(f'Creating networks on devices: PGN->{pgn_device}, AEs->{ae_device}, VGG->{vgg_device}')
normalizer = Normalizer.make('vgg').to(pgn_device)
backbone_to_grad_params = {
'type': args.pgn_proxy_type,
}
if args.pgn_proxy_type == 'raw':
backbone_to_grad_params[args.pgn_proxy_type] = {}
elif args.pgn_proxy_type == 'sigmoid':
backbone_to_grad_params[args.pgn_proxy_type] = {
'scale': args.pgn_proxy_sigmoid_scale,
}
elif args.pgn_proxy_type == 'warped_target':
backbone_to_grad_params[args.pgn_proxy_type] = {
'scale': args.pgn_proxy_warped_target_scale,
'additive': args.pgn_proxy_warped_target_additive,
'downscale_by': args.pgn_proxy_warped_target_downscale_by,
'additive_scale': args.pgn_proxy_warped_target_additive_scale,
}
else:
assert False
if args.pgn_backbone_to_grad == 'direct':
backbone_to_grad_params.update({
'out_scale': args.pgn_out_scale,
'grad_scale': args.pgn_proxy_grad_scale,
})
elif args.pgn_backbone_to_grad == 'proxy':
backbone_to_grad_params.update({
'grad_type': args.pgn_proxy_grad_type,
'grad_scale': args.pgn_proxy_grad_scale,
})
else:
assert False
if args.pgn_proxy_type == 'warped_target':
if args.pgn_proxy_warped_target_additive:
pgn_out_channels = 5
else:
pgn_out_channels = 2
else:
pgn_out_channels = 3
if args.pgn_arch == 'unet':
backbone_params = {
'block_type': args.block_type,
'conv_type': args.conv_type,
'norm_type': args.norm_type,
'down_channels': args.unet_down_channels,
'up_channels': args.unet_up_channels,
'predict_value': args.pgn_predict_value,
'out_channels': pgn_out_channels,
}
elif args.pgn_arch == 'resnet':
assert not args.pgn_predict_value
backbone_params = {
'down_channels': args.resnet_down_channels,
'up_channels': args.resnet_up_channels,
'num_blocks': args.resnet_num_blocks,
'output_nc': pgn_out_channels,
}
else:
assert False
pgn = Pgn(
normalizer,
backbone_type=args.pgn_arch, backbone_params=backbone_params,
backbone_to_grad_type=args.pgn_backbone_to_grad, backbone_to_grad_params=backbone_to_grad_params,
ignore_grad_scale_mismatch=args.pgn_ignore_grad_scale_mismatch,
checkpoint_path=args.pgn_checkpoint)
if args.ploss_type == 'full':
ploss = PerceptualLoss(model=args.ploss_model)
elif args.ploss_type == 'deep':
use_bn = False
if use_bn:
feature_layer = 49
else:
feature_layer = 34
ploss = PerceptualLossDeep(feature_layer=feature_layer, use_bn=use_bn, use_input_norm=False, device=vgg_device)
else:
assert False
autoencoders = [
AutoencoderEnv(args.ae_block_type, args.ae_conv_type, max_layer, ckpt_path)
for (max_layer, ckpt_path)
in zip(args.ae_max_layer, args.ae_checkpoints)
]
pgn = pgn.to(pgn_device)
ploss = ploss.to(vgg_device)
autoencoders = [ae.to(ae_device) for ae in autoencoders]
if args.double:
pgn.double()
ploss.double()
for ae in autoencoders:
ae.double()
for ae, opt_ckpt_path in zip(autoencoders, args.ae_checkpoints_opt):
ae.init_opt(opt_ckpt_path)
if args.pgn_optimizer == 'adam':
opt_pgn = torch.optim.Adam(params=pgn.parameters())
elif args.pgn_optimizer == 'sgd':
opt_pgn = torch.optim.SGD(params=pgn.parameters(), lr=args.pgn_sgd_lr)
else:
assert False
if args.pgn_checkpoint_opt is not None:
logging.debug(f'Loading PGN optimizer checkpoint from {args.pgn_checkpoint_opt}')
opt_pgn_state_dict = torch.load(args.pgn_checkpoint_opt, map_location='cpu')
opt_pgn.load_state_dict(opt_pgn_state_dict)
if args.amp:
models = [pgn, *[ae.autoencoder for ae in autoencoders]]
optimizers = [opt_pgn, *[ae.opt for ae in autoencoders]]
models, optimizers = amp.initialize(models, optimizers, opt_level=args.amp_opt_level)
pgn = models[0]
opt_pgn = optimizers[0]
for ae, autoencoder, opt in zip(autoencoders, models[1:], optimizers[1:]):
ae.autoencoder = autoencoder
ae.opt = opt
for ae in autoencoders:
ae.train()
return normalizer, pgn, opt_pgn, autoencoders, ploss
def main(parser: argparse.ArgumentParser):
logging.basicConfig(level=logging.DEBUG, format='[%(asctime)-15s] %(levelname)s: %(message)s')
args = parser.parse_args()
setup_args(args)
tb_dir, log_dir, model_dir = setup_dirs(args)
if args.distributed:
logging.debug(f'Spawning {args.world_size} workers')
mp.spawn(main_worker, nprocs=args.world_size, args=(args, tb_dir, log_dir, model_dir))
else:
main_worker(None, args, tb_dir, log_dir, model_dir)
def main_worker(rank: Optional[int], args, tb_dir: Path, log_dir: Path, model_dir: Path):
set_random_seeds(args.seed)
logging.basicConfig(
level=logging.INFO if args.no_verbose else logging.DEBUG,
format='[%(asctime)-15s' + (f' | {rank}' if args.distributed else '') + '] %(levelname)s: %(message)s'
)
# Prevent matplotlib from polluting logs with its initialization messages
logging.getLogger('matplotlib').setLevel(logging.WARNING)
logging.getLogger('stylegan').setLevel(logging.INFO)
if args.distributed:
assert rank is not None
torch.cuda.set_device(rank)
if args.pgn_device != 'cuda:0':
logging.warning('Ignoring --pgn-device due to running in distributed multiprocessing mode.')
args.pgn_device = f'cuda:{rank}'
if args.ae_device != 'cuda:0':
logging.warning('Ignoring --ae-device due to running in distributed multiprocessing mode.')
args.ae_device = f'cuda:{rank}'
if args.vgg_device != 'cuda:0':
logging.warning('Ignoring --vgg-device due to running in distributed multiprocessing mode.')
args.vgg_device = f'cuda:{rank}'
args.batch_size = args.worker_batch_size * args.world_size
args.workers = (args.workers + args.world_size - 1) // args.world_size
else:
args.batch_size = args.worker_batch_size
pgn_device = torch.device(args.pgn_device)
ae_device = torch.device(args.ae_device)
vgg_device = torch.device(args.vgg_device)
def use_true_grads(epoch):
if args.pgn_backbone_to_grad == 'proxy':
return False
if epoch < args.warmup_epochs:
return True
else:
if not args.no_alternate_gt_curr:
return epoch % 2 == 0
else:
return False
pgn_loss_coefs = {
'proxy_prc_gt': args.pgn_loss_proxy_prc_gt_coef,
'proxy_l1_gt': args.pgn_loss_proxy_l1_gt_coef,
'proxy_mse_gt': args.pgn_loss_proxy_mse_gt_coef,
'proxy_mse_gen': args.pgn_loss_proxy_mse_gen_coef,
'grad': args.pgn_loss_grad_coef,
'val': args.pgn_loss_value_coef,
'jac': args.pgn_loss_jac_coef,
'warping_grid_tv': args.pgn_loss_warping_grid_tv_coef,
'warping_grid_l2': args.pgn_loss_warping_grid_l2_coef,
'additive_l2': args.pgn_loss_additive_l2_coef,
}
calc_ssim = SSIM(size_average=False)
with ExitStack() as stack:
if args.distributed:
stack.enter_context(ProcessGroup(
backend=args.dist_backend,
init_method=args.dist_init_method,
world_size=args.world_size,
rank=rank,
))
logging.info('Initializing dataloaders...')
train_dataloader, valid_dataloader = get_dataloaders(
dataset_name=args.dataset_name,
data_dir=args.data_dir,
train_batch_size=args.worker_batch_size,
valid_batch_size=args.valid_batch_size,
batches_per_train_epoch=args.batches_per_train_epoch,
batches_per_valid_epoch=args.batches_per_valid_epoch,
valid_first_samples=args.valid_first_samples,
train_num_workers=args.workers,
distributed=args.distributed,
)
normalizer, pgn, opt_pgn, autoencoders, ploss = load_networks(
args, pgn_device, ae_device, vgg_device)
if args.distributed:
pgn = nn.parallel.DistributedDataParallel(pgn, device_ids=[rank])
# It's fine if we don't sync autoencoders across GPUs. In fact, it might make training faster b/c PGN will
# see more diverse samples. Also, ploss does not require gradients and thus does not need to be wrapped in
# DistributedDataParallel.
torch.backends.cudnn.benchmark = True
pgn_grad_norm_avg = MovingAverage(args.pgn_grad_norm_avg)
ae_grad_norm_avg = [MovingAverage(args.ae_grad_norm_avg)] * len(autoencoders)
ae_best_l1 = [None] * len(autoencoders)
ae_best_l1_it = [None] * len(autoencoders)
pgn_loss_grad_func = {
'mse': ScaledMSELoss(args.loss_scale),
'vgg_one_step': VggOneStepLoss(ploss, args.vgg_one_step_lr),
'vgg_grad': VggGradLoss(ploss),
}[args.pgn_loss_grad]
stack.enter_context(torch.no_grad())
if args.distributed:
if rank == 0:
writer = stack.enter_context(SummaryWriter(str(tb_dir)))
else:
writer = None
writer = DistributedSummaryWrapper(writer)
else:
writer = stack.enter_context(SummaryWriter(str(tb_dir)))
for epoch in range(args.start_epoch, args.epochs):
logging.info(f'Starting epoch {epoch}/{args.epochs}')
if not args.valid_only:
with Timer() as t_train:
train(
rank, args, writer, log_dir, epoch, train_dataloader, normalizer,
pgn, opt_pgn, pgn_device, pgn_grad_norm_avg, pgn_loss_grad_func, pgn_loss_coefs,
autoencoders, ae_device, ae_grad_norm_avg, ae_best_l1, ae_best_l1_it, use_true_grads,
ploss, vgg_device,
)
writer.add_scalar('train/time', t_train.time(), epoch)
logging.info(f'[epoch {epoch:>4d}/{args.epochs} | TRAIN] time {t_train.time():.0f}')
with Timer() as t_valid:
valid(
rank, args, writer, log_dir, epoch, valid_dataloader, normalizer, calc_ssim,
pgn.module if args.distributed else pgn, pgn_device, pgn_loss_grad_func,
ploss, vgg_device
)
writer.add_scalar('valid/time', t_valid.time(), epoch)
logging.info(f'[epoch {epoch:>4d}/{args.epochs} | VALID] time {t_valid.time():.1f}')
if not args.valid_only and (not args.distributed or rank == 0):
if (epoch > 0 or args.save_each == 1) and ((epoch % args.save_each) == 0 or epoch == args.epochs - 1):
logging.info(f'Saving PGN+opt checkpoint to {model_dir}')
pgn_checkpoint = pgn.module.get_checkpoint() if args.distributed else pgn.get_checkpoint()
torch.save(pgn_checkpoint, model_dir / f'{epoch}.pth')
torch.save(opt_pgn.state_dict(), model_dir / f'{epoch}_opt.pth')
for ae_idx, autoencoder in enumerate(autoencoders):
logging.info(f'Saving AE#{ae_idx}+opt checkpoint to {model_dir}')
ae_state_dict, opt_ae_state_dict = autoencoder.state_dicts()
torch.save(ae_state_dict, model_dir / f'{epoch}_ae_{ae_idx}.pth')
torch.save(opt_ae_state_dict, model_dir / f'{epoch}_ae_{ae_idx}_opt.pth')
if args.distributed:
dist.barrier()
if args.valid_only:
break
logging.info('Training complete, exiting.')
def train(rank: Optional[int], args, writer, log_dir: Optional[Path], epoch, train_dataloader, normalizer,
pgn, opt_pgn, pgn_device, pgn_grad_norm_avg, pgn_loss_grad_func, pgn_loss_coefs,
autoencoders, ae_device, ae_grad_norm_avg, ae_best_l1, ae_best_l1_it, use_true_grads,
ploss, vgg_device):
pgn.train()
loading_start = time.time()
for i, (gt, _) in enumerate(train_dataloader):
batch_start = time.time()
iteration_train = (epoch * args.batches_per_train_epoch + i) * args.batch_size
time_loading = time.time() - loading_start
writer.add_scalar('train/time_loading', time_loading, iteration_train)
gt = gt.to(pgn_device, non_blocking=True)
if args.double:
gt = gt.double()
with torch.enable_grad():
assert args.worker_batch_size >= len(autoencoders)
samples_per_ae = [
args.worker_batch_size // len(autoencoders) +
(1 if ae_idx < args.worker_batch_size % len(autoencoders) else 0)
for ae_idx in range(len(autoencoders))
]
assert sum(samples_per_ae) == args.worker_batch_size
batch_indices = np.cumsum([0] + samples_per_ae)
# AE forward
gen = []
for ae_idx, ae in enumerate(autoencoders):
ae_input = gt[batch_indices[ae_idx]:batch_indices[ae_idx + 1]]
gen.append(ae(ae_input.to(ae_device)).to(pgn_device))
gen = torch.cat(gen, dim=0)
gen.requires_grad_() # it was detached in ae.forward(); grad is required for Jacobian loss
# PGN forward on current input
pred = pgn(gen, gt)
assert not torch.isnan(pred["grad"]).any()
if args.pgn_loss_grad_coef:
# Ground truth gradient forward-backward
# There is an option to not penalize the predicted gradients directly, in which case we
# will only compute a loss on the proxy target (such as ploss(proxy, gt)). Otherwise, we
# compute batchwise_loss_prc = ploss(gen, gt) and grads_true, its gradient with
# respect to gen.
def target_func(gen):
if args.pgn_target == 'vgg':
batchwise_loss = ploss(gen.to(vgg_device), gt.to(vgg_device)).to(pgn_device)
elif args.pgn_target == 'mse':
batchwise_loss = mse_loss_batchwise(gen, gt)
else:
assert False
if args.pgn_target_secondary is not None and args.pgn_target_secondary_coef:
if args.pgn_target_secondary == 'mse':
batchwise_loss_2 = mse_loss_batchwise(gen, gt)
else:
assert False
batchwise_loss = batchwise_loss + args.pgn_target_secondary_coef * batchwise_loss_2
return batchwise_loss
grads_true, batchwise_loss_prc = forward_backward(target_func, gen)
# AE backward
ae_grads = grads_true if use_true_grads(epoch) else pred['grad']
ae_grad_norms = []
for ae_idx, autoencoder in enumerate(autoencoders):
ae_grad_norm_limit = args.ae_grad_norm_clip_coef * ae_grad_norm_avg[ae_idx].get()
ae_grad = ae_grads[batch_indices[ae_idx]:batch_indices[ae_idx + 1]]
ae_grad_norm = autoencoders[ae_idx].step(ae_grad.to(ae_device), ae_grad_norm_limit)
ae_grad_norms.append(ae_grad_norm)
# PGN step
opt_pgn.zero_grad()
losses_pgn = {}
if args.pgn_loss_proxy_prc_gt:
losses_pgn['proxy_prc_gt'] = ploss(pred['proxy'].to(vgg_device), gt.to(vgg_device)).to(pgn_device)
if args.pgn_loss_proxy_l1_gt:
losses_pgn['proxy_l1_gt'] = l1_loss_batchwise(pred['proxy'], gt)
if args.pgn_loss_proxy_mse_gt:
losses_pgn['proxy_mse_gt'] = mse_loss_batchwise(pred['proxy'], gt)
if args.pgn_loss_proxy_mse_gen:
losses_pgn['proxy_mse_gen'] = mse_loss_batchwise(pred['proxy'], gen.detach())
if args.pgn_loss_grad_coef:
losses_pgn['grad'] = pgn_loss_grad_func(gen.detach(), gt, pred['grad'], grads_true)
if args.pgn_predict_value:
losses_pgn['val'] = mse_loss_batchwise(pred['val'], batchwise_loss_prc.detach())
if args.symmetric_jacobian:
losses_pgn['jac'] = symmetric_jacobian_loss(pred['grad'], gen)
if args.pgn_loss_warping_grid_tv:
losses_pgn['warping_grid_tv'] = total_variation_loss(pred['grid'])
if args.pgn_loss_warping_grid_l2:
losses_pgn['warping_grid_l2'] = (pred['grid']**2).mean(dim=(1, 2, 3))
if args.pgn_loss_additive_l2:
losses_pgn['additive_l2'] = (pred['additive']**2).mean(dim=(1, 2, 3))
if not losses_pgn:
raise RuntimeError('PGN has no loss!')
loss_pgn = torch.stack([
pgn_loss_coefs[k] * v if pgn_loss_coefs[k] != 1 else v
for k, v in losses_pgn.items()
]).sum(dim=0)
mem_pgn = torch.cuda.memory_allocated()
with ExitStack() as stack_backward:
t_backward = stack_backward.enter_context(Timer())
if args.amp:
loss_pgn_scaled = stack_backward.enter_context(amp.scale_loss(loss_pgn, opt_pgn))
else:
loss_pgn_scaled = loss_pgn
loss_pgn_scaled.backward(torch.ones_like(loss_pgn))
pgn_norms = get_grad_norms(pgn.module.backbone if args.distributed else pgn.backbone)
pgn_grad_norm_limit = args.pgn_grad_norm_clip_coef * pgn_grad_norm_avg.get()
pgn_grad_norm = nn.utils.clip_grad_norm_(pgn.parameters(), pgn_grad_norm_limit)
with Timer() as t_step:
opt_pgn.step()
writer.add_scalar(f'train/time_backward', t_backward.time(), iteration_train)
writer.add_scalar(f'train/time_step', t_step.time(), iteration_train)
pgn_loss_val = loss_pgn.mean(dim=0).item()
writer.add_scalar(f'train/loss', pgn_loss_val, iteration_train)
writer.add_scalar(f'train/unet_grad_norm', pgn_grad_norm, iteration_train)
writer.add_scalar(f'train/unet_grad_norm_avg', pgn_grad_norm_avg.get(), iteration_train)
pgn_grad_norm_avg.update(pgn_grad_norm)
# Metrics from autoencoders
loss_l1 = l1_loss_batchwise(gen, gt)
grad_metrics = get_grad_metrics(pred['grad'], grads_true if args.pgn_loss_grad_coef else None)
writer.add_scalar(f'train/l1', loss_l1.mean(dim=0).item(), iteration_train)
for k, v in grad_metrics.items():
writer.add_scalar(f'train/{k}', v.mean(dim=0).item(), iteration_train)
for ae_idx in range(len(autoencoders)):
tb_ae_section = f'train_ae{ae_idx}'
writer.add_scalar(f'{tb_ae_section}/grad_norm', ae_grad_norms[ae_idx], iteration_train)
writer.add_scalar(f'{tb_ae_section}/grad_norm_avg', ae_grad_norm_avg[ae_idx].get(), iteration_train)
ae_grad_norm_avg[ae_idx].update(ae_grad_norm)
def log_tb_ae(key, value):
val = value[batch_indices[ae_idx]:batch_indices[ae_idx + 1]].mean(dim=0).item()
writer.add_scalar(f'{tb_ae_section}/{key}', val, iteration_train)
return val
loss_l1_val = log_tb_ae('l1', loss_l1)
log_tb_ae('loss', loss_pgn)
if args.pgn_loss_grad_coef:
log_tb_ae('loss_grad', losses_pgn['grad'])
log_tb_ae('perceptual', batchwise_loss_prc)
if args.pgn_loss_proxy_prc_gt:
log_tb_ae('proxy_loss_prc', losses_pgn['proxy_prc_gt'])
if args.pgn_loss_proxy_l1_gt:
log_tb_ae('proxy_loss_l1_gt', losses_pgn['proxy_l1_gt'])
if args.pgn_loss_proxy_mse_gt:
log_tb_ae('proxy_loss_mse_gt', losses_pgn['proxy_mse_gt'])
if args.pgn_loss_proxy_mse_gen:
log_tb_ae('proxy_loss_mse_gen', losses_pgn['proxy_mse_gen'])
if args.symmetric_jacobian:
log_tb_ae('loss_jac', losses_pgn['jac'])
if args.pgn_loss_warping_grid_tv:
log_tb_ae('warping_grid_tv', losses_pgn['warping_grid_tv'])
if args.pgn_loss_warping_grid_l2:
log_tb_ae('warping_grid_l2', losses_pgn['warping_grid_l2'])
if args.pgn_loss_additive_l2:
log_tb_ae('additive_l2', losses_pgn['additive_l2'])
if args.pgn_predict_value:
log_tb_ae('perceptual_pred', pred['val'])
log_tb_ae('perceptual_pred_loss', losses_pgn['val'])
for k, v in grad_metrics.items():
log_tb_ae(k, v)
# Save gt & gen once in a while
if i == 0:
if rank is None:
image_filename = f'{epoch:04d}_{i:03d}.jpg'
else:
image_filename = f'{epoch:04d}_{i:03d}_{rank:02d}.jpg'
frame = make_frame(normalizer, gt, gen)
imageio.imwrite(log_dir / image_filename, frame)
# Optionally reset autoencoder
if ae_best_l1[ae_idx] is None or loss_l1_val < ae_best_l1[ae_idx]:
ae_best_l1[ae_idx] = loss_l1_val
ae_best_l1_it[ae_idx] = iteration_train
if iteration_train - ae_best_l1_it[ae_idx] >= args.ae_min_samples_before_reset:
reset_prob = args.ae_reset_prob
elif loss_l1_val > args.ae_l1_hi_reset_threshold:
reset_prob = 1
else:
reset_prob = 0
if reset_prob:
logging.info(f'Autoencoder {ae_idx} is eligible for reset with probability {reset_prob:.3f}')
if np.random.rand() < reset_prob:
logging.info(f'Resetting autoencoder {ae_idx}')
autoencoders[ae_idx].reset()
ae_best_l1[ae_idx] = None
ae_best_l1_it[ae_idx] = None
for field_name, field_norm in pgn_norms.items():
writer.add_scalar(f'{args.pgn_arch}/norm_{field_name}', field_norm, iteration_train)
if args.enable_histograms:
writer.add_histogram(f'train/grads_pred', pred['grad'], iteration_train)
if args.pgn_loss_grad_coef:
writer.add_histogram(f'train/grads_true', grads_true, iteration_train)
batch_time = time.time() - batch_start
writer.add_scalar(f'train/batch_time', batch_time, iteration_train)
writer.add_scalar(f'train/mem_pgn', mem_pgn, iteration_train)
log_header = ' | '.join([
f'epoch {epoch:>4d}/{args.epochs}',
f'TRAIN',
f'batch {i:>3d}/{len(train_dataloader)}',
])
log_items = [
f'time {batch_time:.2f}',
f'load {time_loading:.2f}',
f'loss {pgn_loss_val:.4f}',
]
if args.pgn_loss_grad_coef:
grad_log = ' | '.join([
f'true {grad_metrics["grads_true_norm"].mean(dim=0).item():.4f}',
f'pred {grad_metrics["grads_pred_norm"].mean(dim=0).item():.4f}',
])
log_items.append(f'grad_norm {{{grad_log}}}')
logging.debug(f'[{log_header}] {" | ".join(log_items)}')
loading_start = time.time()
def valid(rank: Optional[int], args, writer, log_dir, epoch, valid_dataloader, normalizer, calc_ssim,
pgn, pgn_device, pgn_loss_grad_func,
ploss, vgg_device):
pgn.eval()
for i, (gt, _) in enumerate(valid_dataloader):
if i < args.valid_skip_batches:
logging.debug(f'Skipping validation batch {i}')
continue
batch_start = time.time()
valid_detailed_metrics = [defaultdict(list) for _ in range(args.valid_batch_size)]
if rank is None:
log_filename_prefix = f'{epoch:04d}_{i:03d}'
else:
log_filename_prefix = f'{epoch:04d}_{i:03d}_{rank:02d}'
if args.valid_task == 'dip':
gt = gt.to(pgn_device, non_blocking=True)
# Initialize DIPs
skip_params = default_skip_params.copy()
skip_params['need_sigmoid'] = args.dip_need_sigmoid
dip_pgn = skip(**skip_params).to(pgn_device)
if not args.valid_disable_model_prc:
dip_prc = skip(**skip_params).to(pgn_device)
dip_prc.load_state_dict(dip_pgn.state_dict())
if not args.valid_disable_model_mse:
dip_mse = skip(**skip_params).to(pgn_device)
dip_mse.load_state_dict(dip_pgn.state_dict())
if args.double:
gt = gt.double()
dip_pgn.double()
if not args.valid_disable_model_prc:
dip_prc.double()
if not args.valid_disable_model_mse:
dip_mse.double()
parameters_pgn = dip_pgn.parameters()
if not args.valid_disable_model_prc:
parameters_prc = dip_prc.parameters()
if not args.valid_disable_model_mse:
parameters_mse = dip_mse.parameters()
dip_input_mean = torch.rand_like(gt).mul_(args.dip_input_mean_scale).detach()
dip_input_noise = torch.zeros_like(dip_input_mean)
use_noise = args.dip_input_noise_std > 0 and np.random.random() < args.dip_input_noise_prob
else:
batch_dict = gt
gt = batch_dict['images']
latents = batch_dict['latents']
gt = gt.to(pgn_device, non_blocking=True)
gt = normalizer((gt + 1) / 2)
latents = {k: v.to(pgn_device, non_blocking=True) for (k, v) in latents.items()}
optimize_names = [name for name in latents if 'prime' in name]
# Initialize StyleGAN
checkpoint = torch.load(args.valid_stylegan_checkpoint_path, map_location='cpu')
generator = StyledGenerator()
generator.load_state_dict(checkpoint['g_running'])
generator = generator.to(pgn_device)
generator.eval()
resolution = 256
step = int(np.log2(resolution) - 2)
decoder = DecoderFromLatents(generator, step=step)
latents_pgn = {
name: nn.Parameter(tensor.clone().detach().to(pgn_device))
for name, tensor in latents.items()}
latents_prc = {
name: nn.Parameter(tensor.clone().detach().to(pgn_device))
for name, tensor in latents.items()}
latents_mse = {
name: nn.Parameter(tensor.clone().detach().to(pgn_device))
for name, tensor in latents.items()}
parameters_pgn = [latents_pgn[name] for name in optimize_names]
parameters_prc = [latents_prc[name] for name in optimize_names]
parameters_mse = [latents_mse[name] for name in optimize_names]
opt_valid_pgn = torch.optim.Adam(parameters_pgn, lr=args.valid_lr)
if args.valid_task == 'stylegan' and 'opt_state' in batch_dict:
opt_valid_pgn.load_state_dict(batch_dict['opt_state'])
if not args.valid_disable_model_prc:
opt_valid_prc = torch.optim.Adam(parameters_prc, lr=args.valid_lr)
if args.valid_task == 'stylegan' and 'opt_state' in batch_dict:
opt_valid_prc.load_state_dict(batch_dict['opt_state'])
if not args.valid_disable_model_mse:
opt_valid_mse = torch.optim.Adam(parameters_mse, lr=args.valid_lr)
if args.valid_task == 'stylegan' and 'opt_state' in batch_dict:
opt_valid_mse.load_state_dict(batch_dict['opt_state'])
initial_prc_loss_val = None
min_prc_loss_val = np.full(args.valid_batch_size, np.inf)
min_prc_loss_it = np.zeros(args.valid_batch_size, dtype=int)
with ExitStack() as stack:
if not args.valid_disable_video:
temp_dir = stack.enter_context(tempfile.TemporaryDirectory(dir='/dev/shm', prefix='dvgg-video-'))
temp_dir = Path(temp_dir)
if rank is None:
video_filename = f'{epoch:04d}_{i:03d}.mp4'
else:
video_filename = f'{epoch:04d}_{i:03d}_{rank:02d}.mp4'
stack.callback(shutil.move, temp_dir / video_filename, log_dir / video_filename)
video_writer = stack.enter_context(VideoWriter(temp_dir / video_filename))
progress_bar = stack.enter_context(tqdm(
range(args.valid_num_iter), disable=not args.tqdm,
desc=f'[epoch {epoch:>4d}/{args.epochs} | VALID | batch {i}/{len(valid_dataloader)}]'))
for j in progress_bar:
# TODO: log individual validation runs separately, with
# batches_valid = (epoch * args.batches_per_valid_epoch + i) * args.world_size + rank
batches_valid = epoch * args.batches_per_valid_epoch + i
if args.valid_task == 'dip':
if use_noise:
dip_input = dip_input_mean + dip_input_noise.normal_(std=args.dip_input_noise_std)
else:
dip_input = dip_input_mean
with torch.enable_grad():
opt_valid_pgn.zero_grad()
if args.valid_task == 'dip':
gen_pgn = normalizer(dip_pgn(dip_input))
else:
gen_pgn = normalizer((decoder(latents_pgn) + 1) / 2)
pred = pgn(gen_pgn.detach(), gt)
loss_dip_pgn = (gen_pgn * pred['grad']).sum(dim=(1, 2, 3))
if args.valid_pgn_mse_coef:
loss_dip_pgn_for_backward = loss_dip_pgn + args.valid_pgn_mse_coef * mse_loss_batchwise(gen_pgn, gt)
else:
loss_dip_pgn_for_backward = loss_dip_pgn
loss_dip_pgn_for_backward.backward(torch.ones_like(loss_dip_pgn))
if args.valid_clip_grad:
torch.nn.utils.clip_grad_norm_(parameters_pgn, args.valid_clip_grad_norm)
opt_valid_pgn.step()
if not args.valid_disable_model_prc:
opt_valid_prc.zero_grad()
if args.valid_task == 'dip':
gen_prc = normalizer(dip_prc(dip_input))
else:
gen_prc = normalizer((decoder(latents_prc) + 1) / 2)
loss_dip_prc = ploss(gen_prc.to(vgg_device), gt.to(vgg_device))
if args.valid_prc_mse_coef:
loss_dip_prc_for_backward = loss_dip_prc + args.valid_prc_mse_coef * mse_loss_batchwise(gen_prc, gt)
else:
loss_dip_prc_for_backward = loss_dip_prc
loss_dip_prc_for_backward.backward(torch.ones_like(loss_dip_prc))
if args.valid_clip_grad:
torch.nn.utils.clip_grad_norm_(parameters_prc, args.valid_clip_grad_norm)
opt_valid_prc.step()
if not args.valid_disable_model_mse:
opt_valid_mse.zero_grad()
if args.valid_task == 'dip':
gen_mse = normalizer(dip_mse(dip_input))
else:
gen_mse = normalizer((decoder(latents_mse) + 1) / 2)
if args.valid_mse_alternative == 'mse':
loss_dip_mse = mse_loss_batchwise(gen_mse, gt)
elif args.valid_mse_alternative == 'l1':
loss_dip_mse = l1_loss_batchwise(gen_mse, gt)
else:
assert False
loss_dip_mse.backward(torch.ones_like(loss_dip_mse))
if args.valid_clip_grad:
torch.nn.utils.clip_grad_norm_(parameters_mse, args.valid_clip_grad_norm)
opt_valid_mse.step()
loss_pgn_l1_val = l1_loss_batchwise(gen_pgn, gt).cpu().numpy()
loss_pgn_l2_val = mse_loss_batchwise(gen_pgn, gt).cpu().numpy()
grads_true, loss_pgn_prc = forward_backward(
lambda gen: ploss(gen.to(vgg_device), gt.to(vgg_device)).to(pgn_device), gen_pgn)
loss_pgn_prc_val = loss_pgn_prc.cpu().numpy()
pgn_metrics = [
loss_pgn_l1_val,
loss_pgn_l2_val,
loss_pgn_prc_val,
calc_ssim(gen_pgn, gt).cpu().numpy(),
]
if not args.valid_disable_model_prc:
prc_metrics = [
l1_loss_batchwise(gen_prc, gt).cpu().numpy(),
mse_loss_batchwise(gen_prc, gt).cpu().numpy(),
loss_dip_prc.cpu().numpy(),
calc_ssim(gen_prc, gt).cpu().numpy(),
]
if not args.valid_disable_model_mse:
mse_metrics = [
l1_loss_batchwise(gen_mse, gt).cpu().numpy(),
loss_dip_mse.cpu().numpy(),
ploss(gen_mse.to(vgg_device), gt.to(vgg_device)).cpu().numpy(),
calc_ssim(gen_mse, gt).cpu().numpy(),
]
def record_metrics(metrics, suffix=None):
for key, values in metrics.items():
if suffix is not None:
writer.add_scalar(f'{key}_{suffix}', values.mean(axis=0), batches_valid)
else:
assert isinstance(values, np.ndarray), (key, values)
assert len(values) == args.valid_batch_size, (key, values)
for b, value in enumerate(values):
valid_detailed_metrics[b][key].append(value)
loss_pgn_grad_val = pgn_loss_grad_func(gen_pgn, gt, pred['grad'], grads_true).cpu().numpy()
frame_metrics = {'valid_pgn/loss': loss_pgn_grad_val}
if args.pgn_predict_value:
frame_metrics['valid_pgn/gen_perceptual_pred'] = pred['val'].cpu().numpy()
image_metrics = dict(zip(
['valid_' + key for key in [
'pgn/l1', 'pgn/l2', 'pgn/perceptual', 'pgn/ssim',
*(['prc/l1', 'prc/l2', 'prc/perceptual', 'prc/ssim']
if not args.valid_disable_model_prc else []),
*(['mse/l1', 'mse/l2', 'mse/perceptual', 'mse/ssim']
if not args.valid_disable_model_mse else []),
*(['ratio_prc/l1', 'ratio_prc/l2', 'ratio_prc/perceptual', 'ratio_prc/ssim']
if not args.valid_disable_model_prc else []),
*(['ratio_mse/l1', 'ratio_mse/l2', 'ratio_mse/perceptual', 'ratio_mse/ssim']
if not args.valid_disable_model_mse else []),
*(['ratio_prc_mse/l1', 'ratio_prc_mse/l2', 'ratio_prc_mse/perceptual', 'ratio_prc_mse/ssim']
if not args.valid_disable_model_prc or not args.valid_disable_model_mse else []),
]],
pgn_metrics +
(prc_metrics if not args.valid_disable_model_prc else []) +
(mse_metrics if not args.valid_disable_model_mse else []) +
([v_pgn / v_prc for (v_pgn, v_prc) in zip(pgn_metrics, prc_metrics)]
if not args.valid_disable_model_prc else []) +
([v_pgn / v_mse for (v_pgn, v_mse) in zip(pgn_metrics, mse_metrics)]
if not args.valid_disable_model_mse else []) +
([v_prc / v_mse for (v_prc, v_mse) in zip(prc_metrics, mse_metrics)]
if not args.valid_disable_model_prc and not args.valid_disable_model_mse else [])
))
frame_metrics.update(image_metrics)
grad_metrics = {
('valid_pgn/' + key): value.cpu().numpy()
for (key, value) in get_grad_metrics(pred['grad'], grads_true).items()
}
frame_metrics.update(grad_metrics)
proxy_pred = pred.get('proxy', None)
if proxy_pred is not None:
frame_metrics.update({
f'valid_pgn/proxy_pred_q{q}': p.cpu().numpy()
for (q, p) in get_multiple_percentiles(proxy_pred).items()
})
proxy_true = None
if args.pgn_proxy_grad_type == 'mse':
_, c, h, w = gen_pgn.shape
proxy_true = gen_pgn - ((c * h * w) / 2) * grads_true
frame_metrics.update({