-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathfuncs.py
260 lines (216 loc) · 7.68 KB
/
funcs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
import numpy as np
import anglepy.ndict as ndict
# FuncLikelihood
class FuncLikelihood():
def __init__(self, x, model, n_batch):
self.x = x
self.model = model
self.n_batch = n_batch
self.n_datapoints = x.itervalues().next().shape[1]
if self.n_datapoints%(self.n_batch) != 0:
print self.n_datapoints, self.n_batch
raise BaseException()
self.blocksize = self.n_batch
self.n_minibatches = self.n_datapoints/self.blocksize
def subval(self, i, w, z):
_x = ndict.getCols(self.x, i*self.n_batch, (i+1)*self.n_batch)
_z = ndict.getCols(z, i*self.n_batch, (i+1)*self.n_batch)
return self.model.logpxz(w, _x, _z)
def subgrad(self, i, w, z):
_x = ndict.getCols(self.x, i*self.n_batch, (i+1)*self.n_batch)
_z = ndict.getCols(z, i*self.n_batch, (i+1)*self.n_batch)
logpx, logpz, g, _ = self.model.dlogpxz_dwz(w, _x, _z)
return logpx, logpz, g
def val(self, w, z):
if self.n_minibatches==1: return self.subval(0, w, z)
logpx, logpz = tuple(zip(*[self.subval(i, w, z) for i in range(self.n_minibatches)]))
return np.hstack(logpx), np.hstack(logpz)
def grad(self, w, z):
if self.n_minibatches==1: return self.subgrad(0, w, z)
logpxi, logpzi, gwi, _ = tuple(zip(*[self.subgrad(i, w, z) for i in range(self.n_minibatches)]))
return np.hstack(logpxi), np.hstack(logpzi), ndict.sum(gwi)
# FuncPosterior
class FuncPosterior():
def __init__(self, likelihood, model):
self.ll = likelihood
self.model = model
self.n_minibatches = likelihood.n_minibatches
self.blocksize = likelihood.blocksize
def subval(self, i, w, z):
prior = self.model.logpw(w)
prior_weight = 1. / float(self.ll.n_minibatches)
logpx, logpz = self.ll.subval(i, w, z)
return logpx.sum() + logpz.sum() + prior_weight * prior
def subgrad(self, i, w, z):
logpx, logpz, gw = self.ll.subgrad(i, w, z)
logpw, gw_prior = self.model.dlogpw_dw(w)
prior_weight = 1. / float(self.ll.n_minibatches)
for j in gw: gw[j] += prior_weight * gw_prior[j]
return logpx.sum() + logpz.sum() + prior_weight * logpw, gw
def val(self, w, z={}):
logpx, logpz = self.ll.val(w, z)
return logpx.sum() + logpz.sum() + self.model.logpw(w)
def grad(self, w, z={}):
logpx, logpz, gw = self.ll.grad(w, z)
prior, gw_prior = self.model.dlogpw_dw(w)
for i in gw: gw[i] += gw_prior[i]
return logpx.sum() + logpz.sum() + prior, gw
# Parallel version of likelihood
# Before using, start ipython cluster, e.g.:
# shell>ipcluster start -n 4
from IPython.parallel.util import interactive
import IPython.parallel
class FuncLikelihoodPar():
def __init__(self, x, model, n_batch):
raise Exception("TODO")
self.x = x
self.c = c = IPython.parallel.Client()
self.model = model
self.n_batch = n_batch
self.clustersize = len(c)
print 'ipcluster size = '+str(self.clustersize)
n_train = x.itervalues().next().shape[1]
if n_train%(self.n_batch*len(c)) != 0: raise BaseException()
self.blocksize = self.n_batch*len(c)
self.n_minibatches = n_train/self.blocksize
# Get pointers to slaves
c.block = False
# Remove namespaces on slaves
c[:].clear()
# Execute stuff on slaves
module, function, args = self.model.constr
c[:].push({'args':args,'x':x}).wait()
commands = [
'import os; cwd = os.getcwd()',
'import sys; sys.path.append(\'../shared\')',
'import anglepy.ndict as ndict',
'import '+module,
'my_n_batch = '+str(n_batch),
'my_model = '+module+'.'+function+'(**args)'
]
for cmd in commands: c[:].execute(cmd).get()
# Import data on slaves
for i in range(len(c)):
_x = ndict.getCols(x, i*(n_train/len(c)), (i+1)*(n_train/len(c)))
c[i].push({'my_x':_x})
c[:].pull(['my_x']).get()
def subval(self, i, w, z):
raise Exception("TODO")
# Replaced my_model.nbatch with my_n_batch, this is UNTESTED
@interactive
def ll(w, z, k):
_x = ndict.getCols(my_x, k*my_n_batch, (k+1)*my_n_batch) #@UndefinedVariable
if z == None:
return my_model.logpxmc(w, _x), None #@UndefinedVariable
else:
return my_model.logpxz(w, _x, z) #@UndefinedVariable
tasks = []
for j in range(len(self.c)):
_z = z
if _z != None:
_z = ndict.getCols(z, j*self.n_batch, (j+1)*self.n_batch)
tasks.append(self.c.load_balanced_view().apply_async(ll, w, _z, i))
res = [task.get() for task in tasks]
raise Exception("TODO: implementation with uncoupled logpx and logpz")
return sum(res)
def subgrad(self, i, w, z):
@interactive
def dlogpxz_dwz(w, z, k):
_x = ndict.getCols(my_x, k*my_n_batch, (k+1)*my_n_batch).copy() #@UndefinedVariable
if z == None:
logpx, gw = my_model.dlogpxmc_dw(w, _x) #@UndefinedVariable
return logpx, None, gw, None
else:
return my_model.dlogpxz_dwz(w, _x, z) #@UndefinedVariable
tasks = []
for j in range(len(self.c)):
_z = z
if _z != None:
_z = ndict.getCols(z, j*self.n_batch, (j+1)*self.n_batch)
tasks.append(self.c.load_balanced_view().apply_async(dlogpxz_dwz, w, _z, i))
res = [task.get() for task in tasks]
v, gw, gz = res[0]
for k in range(1,len(self.c)):
vi, gwi, gzi = res[k]
v += vi
for j in gw: gw[j] += gwi[j]
for j in gz: gz[j] += gzi[j]
return v, gw, gz
def grad(self, w, z=None):
v, gw, gz = self.subgrad(0, w, z)
for i in range(1, self.n_minibatches):
vi, gwi, gzi = self.subgrad(i, w, z)
v += vi
for j in gw: gw[j] += gwi[j]
for j in gz: gz[j] += gzi[j]
return v, gw, gz
def val(self, w, z=None):
logpx, logpz = self.subval(0, w, z)
for i in range(1, self.n_minibatches):
_logpx, _logpz = self.subval(i, w, z)
logpx += _logpx
logpz += _logpz
return logpx, logpz
def grad(self, w, z=None):
logpx, logpz, gw, gz = self.subgrad(0, w, z)
for i in range(1, self.n_minibatches):
logpxi, logpzi, gwi, gzi = self.subgrad(i, w, z)
logpx += logpxi
logpz += logpzi
for j in gw: gw[j] += gwi[j]
for j in gz: gz[j] += gzi[j]
return logpx, logpz, gw, gz
# Helper function
def getColsZX(self, w, z, i):
_x = ndict.getCols(self.x, i*self.n_batch, (i+1)*self.n_batch)
if z != None:
_z = ndict.getCols(z, i*self.n_batch, (i+1)*self.n_batch)
return _z, _x
# Monte Carlo FuncLikelihood
class FuncLikelihoodMC():
def __init__(self, x, model, n_mc_samples):
self.x = x
self.model = model
self.n_mc_samples = n_mc_samples
self.n_minibatches = x.itervalues().next().shape[1]
def subval(self, i, w):
_x = ndict.getCols(self.x, i, i+1)
return self.model.logpxmc(w, _x, self.n_mc_samples)
def subgrad(self, i, w):
_x = ndict.getCols(self.x, i, i+1)
logpx, gw = self.model.dlogpxmc_dw(w, _x, self.n_mc_samples)
return logpx, gw
def val(self, w):
logpx = [self.subval(i, w) for i in range(self.n_minibatches)]
return np.hstack(logpx)
def grad(self, w):
logpxi, gwi = tuple(zip(*[self.subgrad(i, w) for i in range(self.n_minibatches)]))
return np.hstack(logpxi), ndict.sum(gwi)
# FuncPosterior
class FuncPosteriorMC():
def __init__(self, likelihood, model):
self.ll = likelihood
self.model = model
self.n_minibatches = likelihood.n_minibatches
def subval(self, i, w):
prior = self.model.logpw(w)
prior_weight = 1. / float(self.ll.n_minibatches)
logpx = self.ll.subval(i, w)
return logpx.sum(), logpx.sum() + prior_weight * prior
def subgrad(self, i, w):
logpx, gw = self.ll.subgrad(i, w)
v_prior, gw_prior = self.model.dlogpw_dw(w)
prior_weight = 1. / float(self.ll.n_minibatches)
v = logpx.sum() + prior_weight * v_prior
for j in gw: gw[j] += prior_weight * gw_prior[j]
return logpx.sum(), v, gw
def val(self, w):
logpx = self.ll.val(w)
v = logpx.sum() + self.model.logpw(w)
return logpx.sum(), v
def grad(self, w):
logpx, gw = self.ll.grad(w)
v_prior, gw_prior = self.model.dlogpw_dw(w)
v = logpx.sum() + v_prior
for i in gw: gw[i] += gw_prior[i]
return logpx.sum(), v, gw