-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathwzoptim.py
580 lines (437 loc) · 19.3 KB
/
wzoptim.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
import numpy as np
import scipy
import scipy.optimize
import anglepy.ndict as ndict
import anglepy.BNModel as BNModel
import hmc
import time
# Training loop for MCEM
def loop_mcem(dostep, w, hook, hook_wavelength=2, n_iters=9999999):
t_prev = time.time()
z = [[]]
logpxz = [[]]
def getLoglik():
if len(z[0]) < 4: return np.zeros(((0))), np.zeros(((0)))
_z, _logpxz = hmc.combine_samples(z[0], logpxz[0])
ll, ll_var = hmc.estimate_mcmc_likelihood(_z, _logpxz, len(z[0]))
z[0] = []
logpxz[0] = []
return ll, ll_var
for t in xrange(1, n_iters):
_z, _logpxz = dostep(w)
z[0].append(_z)
logpxz[0].append(_logpxz)
if t == 1 or time.time() - t_prev > hook_wavelength:
ll, ll_var = getLoglik()
hook(t, w, _z, ll, ll_var)
t_prev = time.time()
ll, ll_var = getLoglik()
hook(n_iters-1, w, _z, ll, ll_var)
print 'Optimization loop finished'
def lbfgs_wz(model, w, z, x, hook=None, maxiter=None):
def f(y):
_w, _z = ndict.unflatten_multiple(y, [w, z])
logpx, logpz = model.logpxz(_w, x, _z)
return - (logpx.sum() + logpz.sum())
def fprime(y):
_w, _z = ndict.unflatten_multiple(y, [w, z])
logpx, logpz, gw, gz = model.dlogpxz_dwz(_w, x, _z)
gwz = ndict.flatten_multiple((gw, gz))
return - gwz
t = [0, 0, time.time()]
def callback(wz):
if hook is None: return
_w, _z = ndict.unflatten_multiple(wz, (w, z))
t[1] += 1
hook(t[1], _w, _z)
x0 = ndict.flatten_multiple((w, z))
xn, f, d = scipy.optimize.fmin_l_bfgs_b(func=f, x0=x0, fprime=fprime, m=100, iprint=0, callback=callback, maxiter=maxiter)
#scipy.optimize.fmin_cg(f=f, x0=x0, fprime=fprime, full_output=True, callback=hook)
#scipy.optimize.fmin_ncg(f=f, x0=x0, fprime=fprime, full_output=True, callback=hook)
w, z = ndict.unflatten_multiple(xn, (w, z))
if d['warnflag'] is 2:
print 'warnflag:', d['warnflag']
print d['task']
return w, z
def step_batch_mcem(model_p, x, z_mcmc, dostep_m, hmc_stepsize=1e-2, hmc_steps=20, m_steps=5):
print 'Batch MCEM', hmc_stepsize, hmc_steps, m_steps
n_batch = x.itervalues().next().shape[1]
hmc_dostep = hmc.hmc_step_autotune(n_steps=hmc_steps, init_stepsize=hmc_stepsize)
def doStep(w):
def fgrad(_z):
logpx, logpz, gw, gz = model_p.dlogpxz_dwz(w, x, _z)
return logpx + logpz, gz
# E-step
logpxz, acceptRate, stepsize = hmc_dostep(fgrad, z_mcmc)
# M-step
for i in range(m_steps):
#print 'm-step:', i
dostep_m(w, z_mcmc)
return z_mcmc.copy(), logpxz.copy()
return doStep
# HMC with both weights 'w' and latents 'z'
# Problem: stepsize of 'w' becomes really small
def step_hmc_wz(model, x, z, hmc_stepsize=1e-2, hmc_steps=20):
print 'step_hmc_wz', hmc_stepsize, hmc_steps
n_batch = x.itervalues().next().shape[1]
hmc_dostep_z = hmc.hmc_step_autotune(n_steps=hmc_steps, init_stepsize=hmc_stepsize)
hmc_dostep_w = hmc.hmc_step_autotune(n_steps=hmc_steps, init_stepsize=hmc_stepsize)
def dostep(w):
def fgrad_z(_z):
logpx, logpz, gw, gz = model.dlogpxz_dwz(w, x, _z)
return logpx + logpz, gz
logpxz, acceptRate, stepsize = hmc_dostep_z(fgrad_z, z)
shapes_w = ndict.getShapes(w)
def vectorize(d):
v = {}
for i in d: v[i] = d[i].reshape((d[i].size, -1))
return v
def fgrad_w(_w):
_w = ndict.setShapes(_w, shapes_w)
logpx, logpz, gw, gz = model.dlogpxz_dwz(_w, x, z)
gw = vectorize(gw)
return logpx + logpz, gw
_w = vectorize(w)
hmc_dostep_w(fgrad_w, _w)
return z.copy(), logpxz.copy()
return dostep
# Training loop for PVEM and Wake-Sleep algorithms
def loop_pvem(dostep, w, model, hook, hook_wavelength=2, n_iters=9999999):
t_prev = time.time()
logpxz = n = 0
for t in xrange(1, n_iters):
z, _logpxz = dostep(w)
logpxz += _logpxz
n += 1
if t == 1 or t == n_iters-1 or time.time() - t_prev > hook_wavelength:
logpxz /= n
hook(t, w, z, logpxz)
logpxz = 0
n = 0
t_prev = time.time()
print 'Optimization loop finished'
# PVEM B (Predictive Variational EM)
def step_pvem(model_q, model_p, x, w_q, n_batch=100, ada_stepsize=1e-1, warmup=100, reg=1e-8, convertImgs=False):
print 'Predictive VEM', ada_stepsize
hmc_steps=0
hmc_dostep = hmc.hmc_step_autotune(n_steps=hmc_steps, init_stepsize=1e-1)
# We're using adagrad stepsizes
gw_q_ss = ndict.cloneZeros(w_q)
gw_p_ss = ndict.cloneZeros(model_p.init_w())
nsteps = [0]
do_adagrad = True
def doStep(w_p):
#def fgrad(_z):
# logpx, logpz, gw, gz = model_p.dlogpxz_dwz(w, x, _z)
# return logpx + logpz, gz
n_tot = x.itervalues().next().shape[1]
idx_minibatch = np.random.randint(0, n_tot, n_batch)
x_minibatch = {i:x[i][:,idx_minibatch] for i in x}
if convertImgs: x_minibatch = {i:x_minibatch[i]/256. for i in x_minibatch}
# step 1A: sample z ~ p(z|x) from model_q
_, z, _ = model_q.gen_xz(w_q, x_minibatch, {}, n_batch)
# step 1B: update z using HMC
def fgrad(_z):
logpx, logpz, gw, gz = model_p.dlogpxz_dwz(w_p, _z, x_minibatch)
return logpx + logpz, gz
if (hmc_steps > 0):
logpxz, _, _ = hmc_dostep(fgrad, z)
def optimize(w, gw, gw_ss, stepsize):
if do_adagrad:
for i in gw:
gw_ss[i] += gw[i]**2
if nsteps[0] > warmup:
w[i] += stepsize / np.sqrt(gw_ss[i]+reg) * gw[i]
#print (stepsize / np.sqrt(gw_ss[i]+reg)).mean()
else:
for i in gw:
w[i] += 1e-4 * gw[i]
# step 2: use z to update model_p
logpx_p, logpz_p, gw_p, gz_p = model_p.dlogpxz_dwz(w_p, x_minibatch, z)
_, gw_prior = model_p.dlogpw_dw(w_p)
gw = {i: gw_p[i] + float(n_batch)/n_tot * gw_prior[i] for i in gw_p}
optimize(w_p, gw, gw_p_ss, ada_stepsize)
# step 3: use gradients of model_p to update model_q
_, logpz_q, fd, gw_q = model_q.dfd_dw(w_q, x_minibatch, z, gz_p)
_, gw_prior = model_q.dlogpw_dw(w_q)
gw = {i: -gw_q[i] + float(n_batch)/n_tot * gw_prior[i] for i in gw_q}
optimize(w_q, gw, gw_q_ss, ada_stepsize)
nsteps[0] += 1
return z.copy(), logpx_p + logpz_p - logpz_q
return doStep
# Wake-Sleep algorithm
def step_wakesleep(model_q, model_p, x, w_q, n_batch=100, ada_stepsize=1e-1, warmup=100, reg=1e-8, convertImgs=False):
print 'Wake-Sleep', ada_stepsize
# We're using adagrad stepsizes
gw_q_ss = ndict.cloneZeros(w_q)
gw_p_ss = ndict.cloneZeros(model_p.init_w())
nsteps = [0]
do_adagrad = True
def doStep(w_p):
n_tot = x.itervalues().next().shape[1]
idx_minibatch = np.random.randint(0, n_tot, n_batch)
x_minibatch = {i:x[i][:,idx_minibatch] for i in x}
def optimize(w, gw, gw_ss, stepsize):
if do_adagrad:
for i in gw:
gw_ss[i] += gw[i]**2
if nsteps[0] > warmup:
w[i] += stepsize / np.sqrt(gw_ss[i]+reg) * gw[i]
#print (stepsize / np.sqrt(gw_ss[i]+reg)).mean()
else:
for i in gw:
w[i] += 1e-4 * gw[i]
# Wake phase: use z ~ q(z|x) to update model_p
_, z, _ = model_q.gen_xz(w_q, x_minibatch, {}, n_batch)
_, logpz_q = model_q.logpxz(w_q, x_minibatch, z)
logpx_p, logpz_p, gw_p, gz_p = model_p.dlogpxz_dwz(w_p, x_minibatch, z)
_, gw_prior = model_p.dlogpw_dw(w_p)
gw = {i: gw_p[i] + float(n_batch)/n_tot * gw_prior[i] for i in gw_p}
optimize(w_p, gw, gw_p_ss, ada_stepsize)
# Sleep phase: use x ~ p(x|z) to update model_q
x_p, z_p, _ = model_p.gen_xz(w_p, {}, {}, n_batch)
_, _, gw_q, _ = model_q.dlogpxz_dwz(w_q, x_p, z_p)
_, gw_prior = model_q.dlogpw_dw(w_q)
gw = {i: gw_q[i] + float(n_batch)/n_tot * gw_prior[i] for i in gw_q}
optimize(w_q, gw, gw_q_ss, ada_stepsize)
nsteps[0] += 1
return z.copy(), logpx_p + logpz_p - logpz_q
return doStep
# Compute likelihood lower bound given prediction and generative model
# L is number of samples
def lowerbound_wakesleep(model_q, model_p, w_q, w_p, x, L=1, convertImgs=False):
if convertImgs: x = {i:x[i]/256. for i in x}
n_batch = x.itervalues().next().shape[1]
logpxz = 0
for _ in range(L):
# Sample from q
_, z, _ = model_q.gen_xz(w_q, x, {}, n_batch)
# Measure the entropy term log q(z|x)
_, logpz_q = model_q.logpxz(w_q, x, z)
# Measure reconstruction error log p(x|z) and prior log p(z)
logpx_p, logpz_p = model_p.logpxz(w_p, x, z)
logpxz += logpx_p + logpz_p - logpz_q
logpxz /= L
return logpxz
# Training loop for variational autoencoder
def loop_va(dostep, v, w, hook, dt_hook=2, n_iters=9999999):
t_prev = time.time()
L = 0
n = 0
for t in xrange(1, n_iters):
z, _L = dostep(v, w)
L += _L.mean()
n += 1
if t == 1 or t == n_iters-1 or time.time() - t_prev > dt_hook:
L /= n
hook(t, v, w, L)
L = 0
n = 0
t_prev = time.time()
print 'Optimization loop finished'
# Learning step for variational auto-encoder
def step_vae(model, x, v, w, n_batch=100, stepsize=1e-1, warmup=100, anneal=True, convertImgs=False, binarize=False):
print 'Variational Auto-Encoder', n_batch, stepsize, warmup
# We're using adagrad stepsizes
gv_ss = ndict.cloneZeros(v)
gw_ss = ndict.cloneZeros(w)
nsteps = [0]
def doStep(v, w):
n_tot = x.itervalues().next().shape[1]
idx_minibatch = np.random.randint(0, n_tot, n_batch)
x_minibatch = {i:x[i][:,idx_minibatch] for i in x}
if convertImgs: x_minibatch['x'] = x_minibatch['x']/256.
if binarize: x_minibatch['x'] = np.random.binomial(n=1, p=x_minibatch['x'])
# Sample epsilon from prior
z = model.gen_eps(n_batch)
#for i in z: z[i] *= 0
# Get gradient
logpx, logpz, logqz, gv, gw = model.dL_dw(v, w, x_minibatch, z)
_, _, gv_prior, gw_prior = model.dlogpw_dw(v, w)
gv = {i: gv[i] + float(n_batch)/n_tot * gv_prior[i] for i in gv}
gw = {i: gw[i] + float(n_batch)/n_tot * gw_prior[i] for i in gw}
# Update parameters
adagrad_reg = 1e-8
c = 1.0
if not anneal: c /= nsteps[0]+1
for i in gv:
gv_ss[i] += gv[i]**2
if nsteps[0] > warmup:
v[i] += stepsize / np.sqrt(gv_ss[i] * c + adagrad_reg) * gv[i]
for i in gw:
gw_ss[i] += gw[i]**2
if nsteps[0] > warmup:
w[i] += stepsize / np.sqrt(gw_ss[i] * c + adagrad_reg) * gw[i]
nsteps[0] += 1
return z.copy(), logpx + logpz - logqz
return doStep
# Compute likelihood lower bound given a variational auto-encoder
# L is number of samples
def est_loglik_va(model, v, w, x, L=1, convertImgs=False):
if convertImgs: x = {i:x[i]/256. for i in x}
n_batch = x.itervalues().next().shape[1]
px = 0 # estimate of marginal likelihood
lowbound = 0 # estimate of lower bound of marginal likelihood
for _ in range(L):
# Sample from eps
z = model.gen_eps(n_batch)
logpx, logpz, logqz = model.L(v, w, x, z)
lowbound += (logpx + logpz - logqz).mean()
px += np.exp(logpx + logpz - logqz)
lowbound /= L
logpx = np.log(px / L).mean()
return lowbound, logpx
# Naive stochastic variational inference and learning
# NOTE: Does NOT use prior on variational parameters
def step_naivesvb(model_q, model_p, x, v, n_batch=100, ada_stepsize=1e-1, warmup=100, reg=1e-8, convertImgs=False):
print 'Naive SV Est', ada_stepsize
# We're using adagrad stepsizes
gv_ss = ndict.cloneZeros(v)
gw_ss = ndict.cloneZeros(model_p.init_w())
nsteps = [0]
do_adagrad = True
def doStep(w):
n_tot = x.itervalues().next().shape[1]
idx_minibatch = np.random.randint(0, n_tot, n_batch)
x_minibatch = {i:x[i][:,idx_minibatch] for i in x}
if convertImgs: x_minibatch = {i:x_minibatch[i]/256. for i in x_minibatch}
def optimize(w, gw, gw_ss, stepsize):
if do_adagrad:
for i in gw:
gw_ss[i] += gw[i]**2
if nsteps[0] > warmup:
w[i] += stepsize / np.sqrt(gw_ss[i]+reg) * gw[i]
#print (stepsize / np.sqrt(gw_ss[i]+reg)).mean()
else:
for i in gw:
w[i] += 1e-4 * gw[i]
# Phase 1: use z ~ q(z|x) to update model_p
_, z, _ = model_q.gen_xz(v, x_minibatch, {}, n_batch)
_, logpz_q = model_q.logpxz(v, x_minibatch, z)
logpx_p, logpz_p, gw, _ = model_p.dlogpxz_dwz(w, x_minibatch, z)
_, gw_prior = model_p.dlogpw_dw(w)
gw = {i: gw[i] + float(n_batch)/n_tot * gw_prior[i] for i in gw}
# Phase 2: use x ~ p(x|z) to update model_q
_, _, gv, _ = model_q.dlogpxz_dwz(v, x_minibatch, z)
#_, gw_prior = model_q.dlogpw_dw(w_q)
#gw_q = {i: gw_q[i] + float(n_batch)/n_tot * gw_prior[i] for i in gw_q}
weight = np.sum(logpx_p) + np.sum(logpz_p) - np.sum(logpz_q) - float(n_batch)
gv = {i: gv[i] * weight for i in gv}
optimize(w, gw, gw_ss, ada_stepsize)
optimize(v, gv, gv_ss, ada_stepsize)
nsteps[0] += 1
return z.copy(), logpx_p + logpz_p - logpz_q
return doStep
# Black-box variational inference algorithm
def step_svb_blackbox(model_q, model_p, x, v, n_batch=10, n_subbatch=10, ada_stepsize=1e-1, warmup=100, convertImgs=False):
print 'Black-box variational inference', n_batch, ada_stepsize,
# We're using adagrad stepsizes
gv_ss = ndict.cloneZeros(v)
gw_ss = ndict.cloneZeros(model_p.init_w())
# Control variate covariance and variance
cv_cov = ndict.cloneZeros(v)
cv_var = ndict.cloneZeros(v)
cv_lr = 0.01
nsteps = [0]
def doStep(w):
grad = ndict.cloneZeros(v)
gw = ndict.cloneZeros(w)
for l in range(n_batch):
n_tot = x.itervalues().next().shape[1]
idx_minibatch = np.random.randint(0, n_tot, n_subbatch)
x_minibatch = {i:x[i][:,idx_minibatch] for i in x}
if convertImgs: x_minibatch = {i:x_minibatch[i]/256. for i in x_minibatch}
# Use z ~ q(z|x) to compute d[LB]/d[gw]
_, z, _ = model_q.gen_xz(v, x_minibatch, {}, n_subbatch)
_, logpz_q = model_q.logpxz(v, x_minibatch, z)
logpx_p, logpz_p, _gw, gz_p = model_p.dlogpxz_dwz(w, x_minibatch, z)
for i in _gw: gw[i] += _gw[i]
# Compute d[LB]/d[gv] where gv = v (variational params)
_, _, gv, _ = model_q.dlogpxz_dwz(v, x_minibatch, z)
weight = np.sum(logpx_p) + np.sum(logpz_p) - np.sum(logpz_q)
for i in v:
f = gv[i] * weight
h = gv[i]
cv_cov[i] = cv_cov[i] + cv_lr * (f * h - cv_cov[i])
cv_var[i] = cv_var[i] + cv_lr * (h**2 - cv_var[i])
grad[i] += f - (cv_cov[i]/(cv_var[i] + 1e-8)) * h
_, gwprior = model_p.dlogpw_dw(w)
for i in gw: gw[i] += float(n_subbatch*n_batch)/n_tot * gwprior[i]
def optimize(_w, _gw, gw_ss, stepsize):
reg=1e-8
for i in _gw:
gw_ss[i] += _gw[i]**2
if nsteps[0] > warmup:
_w[i] += stepsize / np.sqrt(gw_ss[i]+reg) * _gw[i]
optimize(w, gw, gw_ss, ada_stepsize)
optimize(v, grad, gv_ss, ada_stepsize)
nsteps[0] += 1
if ndict.hasNaN(grad):
raise Exception()
if ndict.hasNaN(v):
raise Exception()
return z.copy(), logpx_p + logpz_p - logpz_q
return doStep
'''
Optimize a VAE with the Sum-Of-Functions optimizer by Jascha Sohl-Dickstein (2014)
n_resample = number of iterations before resampling each minibatch. '0' means no resampling.
resample_keepmem: Keep batch memory when resampling
'''
def optim_vae_sfo(model, x, v_init, w_init, n_batch, n_passes, hook, n_resample=20, resample_keepmem=False, bernoulli_x=False, display=0):
# Shuffle columns of dataset x
ndict.shuffleCols(x)
# create minibatches
n_tot = x.itervalues().next().shape[1]
minibatches = []
n_minibatches = n_tot / n_batch
if (n_tot%n_batch) != 0: raise Exception()
# Divide into minibatches
def make_minibatch(i):
_x = ndict.getCols(x, i * n_batch, (i+1) * n_batch)
_eps = model.gen_eps(n_batch)
if bernoulli_x: _x['x'] = np.random.binomial(n=1, p=_x['x'])
return [i, _x, _eps]
for i in range(n_minibatches):
minibatches.append(make_minibatch(i))
L = [0.]
n_L = [0]
def f_df(w, minibatch):
i_minibatch = minibatch[0]
x_minibatch = minibatch[1]
eps_minibatch = minibatch[2]
# Get gradient
logpx, logpz, logqz, gv, gw = model.dL_dw(w['v'], w['w'], x_minibatch, eps_minibatch)
# Get gradient w.r.t. priors
logpv, logpw, gv_prior, gw_prior = model.dlogpw_dw(w['v'], w['w'])
gv = {i: gv[i] + float(n_batch)/n_tot * gv_prior[i] for i in gv}
gw = {i: gw[i] + float(n_batch)/n_tot * gw_prior[i] for i in gw}
f = (logpx.sum() + logpz.sum() - logqz.sum())
L[0] += -f/(1.*n_batch)
n_L[0] += 1
f += float(n_batch)/n_tot * logpv
f += float(n_batch)/n_tot * logpw
for i in gv: gv[i] *= -1./n_batch
for i in gw: gw[i] *= -1./n_batch
f *= -1./n_batch
#print 'norms gv:'
#ndict.pNorm(gv)
#print 'norms gw'
#ndict.pNorm(gw)
return f, {'v':gv,'w':gw}
w_init = {'v':v_init, 'w':w_init}
from sfo import SFO
optimizer = SFO(f_df, w_init, minibatches, display=display)
#optimizer.check_grad()
# loop
for i in range(n_passes):
w = optimizer.optimize(num_passes=1)
LB = L[0]/(1.*n_L[0])
hook(i, w['v'], w['w'], LB)
L[0] = 0
n_L[0] = 0
# Reset noise epsilon of some minibatches
for j in range(n_minibatches):
if n_resample > 0 and i%n_resample == j%n_resample:
minibatches[j] = make_minibatch(j)
optimizer.replace_subfunction(j, resample_keepmem, minibatches[j])
print "Finished!"