-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathscript-2020.R
614 lines (513 loc) · 22.3 KB
/
script-2020.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
# For 2015-2020 data.
#Tract 42091206702 returns NoData for the IPD classification it was corrected by hard coding "Well Below Average"
#For 2020 ACS check this tract of issues it may present. Other tracts with 0 population for variables are coded correctly and low population tracts are excluded.
## SETUP
# Dependencies
library(plyr); library(here); library(sf); library(summarytools);
library(tidycensus); library(tidyverse); library(tigris); library(dplyr); library(descr)
# Census API Key
census_api_key(Sys.getenv("CENSUS_API_KEY"), overwrite = TRUE)
# Fields
# See https://www.census.gov/data/developers/data-sets/acs-5year.html
# for the variables for Detailed Tables (B), Subject Tables (S), and Data Profiles (DP)
disabled_universe <- "S1810_C01_001"
disabled_count <- "S1810_C02_001"
disabled_percent <- "S1810_C03_001"
ethnic_minority_universe <- "B03002_001"
ethnic_minority_count <- "B03002_012"
ethnic_minority_percent <- NA
female_universe <- "S0101_C01_001"
female_count <- "S0101_C05_001"
female_percent <- "DP05_0003PE"
foreign_born_universe <- "B05012_001"
foreign_born_count <- "B05012_003"
foreign_born_percent <- NA
limited_english_proficiency_universe <- "S1601_C01_001"
limited_english_proficiency_count <- "S1601_C05_001"
limited_english_proficiency_percent <- "S1601_C06_001"
low_income_universe <- "S1701_C01_001"
low_income_count <- "S1701_C01_042"
low_income_percent <- NA
older_adults_universe <- "S0101_C01_001"
older_adults_count <- "S0101_C01_030"
older_adults_percent <- "S0101_C02_030"
racial_minority_universe <- "B02001_001"
racial_minority_count <- "B02001_002"
racial_minority_percent <- NA
youth_universe <- "B03002_001"
youth_count <- "B09001_001"
youth_percent <- NA
ipd_year <- 2020
ipd_states <- c("NJ", "PA")
ipd_counties <- c("34005", "34007", "34015", "34021", "42017", "42029", "42045", "42091", "42101")
# Functions
min <- function(i, ..., na.rm = TRUE) {
base::min(i, ..., na.rm = na.rm)
}
mean <- function(i, ..., na.rm = TRUE) {
base::mean(i, ..., na.rm = na.rm)
}
sd <- function(i, ..., na.rm = TRUE) {
stats::sd(i, ..., na.rm = na.rm)
}
max <- function(i, ..., na.rm = TRUE) {
base::max(i, ..., na.rm = na.rm)
}
#breaks part
st_dev_breaks <- function(x, i, na.rm = TRUE){
half_st_dev_count <- c(-1 * rev(seq(1, i, by = 2)),
seq(1, i, by = 2))
if((i %% 2) == 1) {
half_st_dev_breaks <- sapply(half_st_dev_count,
function(i) (0.5 * i * sd(x)) + mean(x))
half_st_dev_breaks[[1]] <- 0
half_st_dev_breaks[[2]] <- ifelse(half_st_dev_breaks[[2]] < 0,
0.1,
half_st_dev_breaks[[2]])
half_st_dev_breaks[[i + 1]] <- ifelse(max(x) > half_st_dev_breaks[[i + 1]],
max(x), half_st_dev_breaks[[i + 1]])
} else {
half_st_dev_breaks <- NA
}
return(half_st_dev_breaks)
}
move_last <- function(df, last_col) {
match(c(setdiff(names(df), last_col), last_col), names(df))
}
description <- function(i) {
des <- as.numeric(summarytools::descr(i, na.rm = TRUE,
stats = c("min", "med", "mean", "sd", "max")))
des <- c(des[1:4], des[4] / 2, des[5])
return(des)
}
round_0 <- function(i) round(i, 0)
round_1 <- function(i) round(i, 1)
round_2 <- function(i) round(i, 2)
mult_100 <- function(i) i * 100
## VARIANCE REPLICATES
ipd_states_numeric <- fips_codes %>%
filter(state %in% ipd_states) %>%
select(state_code) %>% distinct(.) %>% pull(.)
var_rep <- NULL
##########changed .gz to .zip and r bind to dplyr::bind_rows
for (i in 1:length(ipd_states)){
url <- paste0("https://www2.census.gov/programs-surveys/acs/replicate_estimates/",
ipd_year,
"/data/5-year/140/B02001_",
ipd_states_numeric[i],
".csv.zip")
temp <- tempfile()
download.file(url, temp)
var_rep_i <- read_csv(unzip(temp))
var_rep <- dplyr::bind_rows(var_rep, var_rep_i)
}
var_rep <- var_rep %>%
mutate_at(vars(GEOID), ~(str_sub(., 8, 18))) %>%
filter(str_sub(GEOID, 1, 5) %in% ipd_counties) %>%
select(-TBLID, -NAME, -ORDER, -MOE, -CME, -SE) %>%
filter(TITLE %in% c("Black or African American alone",
"American Indian and Alaska Native alone",
"Asian alone",
"Native Hawaiian and Other Pacific Islander alone",
"Some other race alone",
"Two or more races:"))
num <- var_rep %>%
group_by(GEOID) %>%
summarize_if(is.numeric, ~ sum(.)) %>%
select(-GEOID)
estim <- num %>% select(ESTIMATE)
individual_replicate <- num %>% select(-ESTIMATE)
id <- var_rep %>% select(GEOID) %>% distinct(.) %>% pull(.)
sqdiff_fun <- function(v, e) (v - e) ^ 2
sqdiff <- mapply(sqdiff_fun, individual_replicate, estim)
#sum_sqdiff <- rowsum(sqdiff)
sum_sqdiff <- sapply(sqdiff, sum)
variance <- 0.05 * sum_sqdiff
moe <- round(sqrt(variance) * 1.645, 0)
rm_moe <- cbind(id, moe) %>%
as_tibble(.) %>%
rename(GEOID20 = id, RM_CntMOE = moe) %>%
mutate_at(vars(RM_CntMOE), as.numeric)
## DOWNLOADS
# Counts and universes
counts <- c(disabled_count, disabled_universe,
ethnic_minority_count, ethnic_minority_universe,
female_count, female_universe,
foreign_born_count, foreign_born_universe,
limited_english_proficiency_count, limited_english_proficiency_universe,
low_income_count, low_income_universe,
older_adults_count, older_adults_universe,
racial_minority_count, racial_minority_universe,
youth_count, youth_universe)
counts_ids <- c("D_C", "D_U",
"EM_C", "EM_U",
"F_C", "F_U",
"FB_C", "FB_U",
"LEP_C", "LEP_U",
"LI_C", "LI_U",
"OA_C", "OA_U",
"RM_C", "RM_U",
"Y_C", "Y_U")
# Zip count API variables and their appropriate abbreviations together
counts_calls <- tibble(id = counts_ids, api = counts) %>%
drop_na(.)
# Separate into different types of API requests
s_calls <- counts_calls %>%
filter(str_sub(api, 1, 1) == "S") # Summary Tables
d_calls <- counts_calls %>%
filter(str_sub(api, 1, 1) == "B") # Detailed Tables
dp_calls <- counts_calls %>%
filter(str_sub(api, 1, 1) == "D") # Data Profile
# Make requests; if variables exist for this type, dl and append
dl_counts <- NULL
if(length(s_calls$id > 0)){
s_counts <- get_acs(geography = "tract",
state = ipd_states,
output = "wide",
year = ipd_year,
variables = s_calls$api) %>%
select(-NAME)
dl_counts <- bind_cols(dl_counts, s_counts)
}
if(length(d_calls$id > 0)){
d_counts <- get_acs(geography = "tract",
state = ipd_states,
output = "wide",
year = ipd_year,
variables = d_calls$api) %>%
select(-NAME)
dl_counts <- left_join(dl_counts, d_counts)
}
if(length(dp_calls$id > 0)){
dp_counts <- get_acs(geography = "tract",
state = ipd_states,
output = "wide",
year = ipd_year,
variables = dp_calls$api) %>%
select(-NAME)
dl_counts <- left_join(dl_counts, dp_counts)
}
dl_counts <- dl_counts %>%
rename(GEOID20 = GEOID)
# For DP downloads, make sure counts_calls and dl_counts match
counts_calls$api <- str_replace(counts_calls$api, "E$", "")
for(i in 1:length(counts_calls$id)){
names(dl_counts) <- str_replace(names(dl_counts),
counts_calls$api[i],
counts_calls$id[i])
}
# Identify duplicate API columns and create if missing
duplicate_cols <- counts_calls %>%
group_by(api) %>%
filter(n()>1) %>%
summarize(orig = id[1],
duplicator = id[2])
e_paste <- function(i) paste0(i, "E")
m_paste <- function(i) paste0(i, "M")
e_rows <- apply(duplicate_cols, 2, e_paste)
m_rows <- apply(duplicate_cols, 2, m_paste)
combined_rows <- as_tibble(rbind(e_rows, m_rows)) %>%
mutate_all(as.character)
for(i in 1:length(combined_rows$api)){
dl_counts[combined_rows$duplicator[i]] <- dl_counts[combined_rows$orig[i]]
}
# Percentages
percs <- c(disabled_percent,
ethnic_minority_percent,
female_percent,
foreign_born_percent,
limited_english_proficiency_percent,
low_income_percent,
older_adults_percent,
racial_minority_percent,
youth_percent)
percs_ids <- c("D_P", "EM_P", "F_P", "FB_P", "LEP_P",
"LI_P", "OA_P", "RM_P", "Y_P")
percs_calls <- tibble(id = percs_ids, api = percs) %>%
drop_na(.)
s_calls <- percs_calls %>%
filter(str_sub(api, 1, 1) == "S")
d_calls <- percs_calls %>%
filter(str_sub(api, 1, 1) == "B")
dp_calls <- percs_calls %>%
filter(str_sub(api, 1, 1) == "D")
dl_percs <- NULL
if(length(s_calls$id > 0)){
s_percs <- get_acs(geography = "tract",
state = ipd_states,
output = "wide",
year = ipd_year,
variables = s_calls$api) %>%
select(-NAME)
dl_percs <- bind_cols(dl_percs, s_percs)
}
if(length(d_calls$id > 0)){
d_percs <- get_acs(geography = "tract",
state = ipd_states,
output = "wide",
year = ipd_year,
variables = d_calls$api) %>%
select(-NAME)
dl_percs <- left_join(dl_percs, d_percs)
}
if(length(dp_calls$id > 0)){
dp_percs <- get_acs(geography = "tract",
state = ipd_states,
output = "wide",
year = ipd_year,
variables = dp_calls$api) %>%
select(-NAME)
dl_percs <- left_join(dl_percs, dp_percs)
}
dl_percs <- dl_percs %>%
rename(GEOID20 = GEOID)
# For DP downloads, make sure percs_calls and dl_percs match
percs_calls$api <- str_replace(percs_calls$api, "PE", "")
names(dl_percs) <- str_replace(names(dl_percs), "PE", "E")
names(dl_percs) <- str_replace(names(dl_percs), "PM", "M")
for(i in 1:length(percs_calls$id)){
names(dl_percs) <- str_replace(names(dl_percs),
percs_calls$api[i],
percs_calls$id[i])
}
# Subset for DVRPC region
# Desired RM_CE = RM_UE - RM_CE
dl_counts <- dl_counts %>%
filter(str_sub(GEOID20, 1, 5) %in% ipd_counties)
dl_percs <- dl_percs %>%
filter(str_sub(GEOID20, 1, 5) %in% ipd_counties)
## CALCULATIONS
# Exception 1: RM_CE = RM_UE - RM_CE
dl_counts <- dl_counts %>% mutate(x = RM_UE - RM_CE) %>%
select(-RM_CE) %>%
rename(RM_CE = x)
# Exception 2: Substitute in RM_CntMOE
if(exists("rm_moe")){
dl_counts <- dl_counts %>%
select(-RM_CM) %>%
left_join(., rm_moe, by) %>%
rename(RM_CM = RM_CntMOE) %>%
mutate_at(vars(RM_CM), as.numeric)
}
# Exception 3: Slice low-population tracts
slicer <- c("34005981802","34005982200","34021980000","42017980000",
"42045980300","42045980000","42045980200","42091980100",
"42091980000","42091980200","42091980300","42101036901",
"42101980001","42101980002","42101980003","42101980300",
"42101980701","42101980702","42101980800","42101980100",
"42101980200", "42101980400","42101980500","42101980600",
"42101980901","42101980902","42101980903","42101980904",
"42101980905","42101980906", "42101989100","42101989200",
"42101989300")
dl_counts <- dl_counts %>% filter(!(GEOID20 %in% slicer))
dl_percs <- dl_percs %>% filter(!(GEOID20 %in% slicer))
# Split `dl_counts` into list for processing
# Sort column names for consistency
# `comp` = "component parts"
#has deprecated change to tidyselect::peek_vars()
comp <- list()
comp$uni_est <- dl_counts %>% select(ends_with("UE")) %>% select(sort(current_vars()))
comp$uni_moe <- dl_counts %>% select(ends_with("UM")) %>% select(sort(current_vars()))
comp$count_est <- dl_counts %>% select(ends_with("CE")) %>% select(sort(current_vars()))
comp$count_moe <- dl_counts %>% select(ends_with("CM")) %>% select(sort(current_vars()))
# Compute percentages and associated MOEs
pct_matrix <- NULL
pct_moe_matrix <- NULL
for (c in 1:length(comp$uni_est)){
pct <- unlist(comp$count_est[,c] / comp$uni_est[,c])
pct_matrix <- cbind(pct_matrix, pct)
moe <- NULL
for (r in 1:length(comp$uni_est$LI_UE)){
moe_indiv <- as.numeric(moe_prop(comp$count_est[r,c],
comp$uni_est[r,c],
comp$count_moe[r,c],
comp$uni_moe[r,c]))
moe <- append(moe, moe_indiv)
}
pct_moe_matrix <- cbind(pct_moe_matrix, moe)
}
# Result: `pct` and `pct_moe` have percentages and associated MOEs
pct <- as_tibble(pct_matrix) %>% mutate_all(~ . * 100) %>% mutate_all(round_1)
names(pct) <- str_replace(names(comp$uni_est), "_UE", "_PctEst")
pct_moe <- as_tibble(pct_moe_matrix) %>% mutate_all(~ . * 100) %>% mutate_all(round_1)
names(pct_moe) <- str_replace(names(comp$uni_est), "_UE", "_PctMOE")
# Exception 4: If MOE == 0; MOE = 0.1
pct_moe <- pct_moe %>% replace(., . == 0, 0.1)
# Exception 5: Substitute percentages and associated MOEs when available from AFF
pct <- pct %>% mutate(D_PctEst = dl_percs$D_PE,
OA_PctEst = dl_percs$OA_PE,
LEP_PctEst = dl_percs$LEP_PE,
F_PctEst = dl_percs$F_PE)
pct_moe <- pct_moe %>% mutate(D_PctMOE = dl_percs$D_PM,
OA_PctMOE = dl_percs$OA_PM,
LEP_PctMOE = dl_percs$LEP_PM,
F_PctMOE = dl_percs$F_PM)
# Compute percentile
# Add percentages to `comp`; sort column names for consistency
comp$pct_est <- pct %>% select(sort(current_vars()))
percentile_matrix <- NULL
for (c in 1:length(comp$uni_est)){
p <- unlist(comp$pct_est[,c])
rank <- ecdf(p)(p)
percentile_matrix <- cbind(percentile_matrix, rank)
}
# Result: `percentile` has rank
percentile <- as_tibble(percentile_matrix) %>% mutate_all(round_2)
names(percentile) <- str_replace(names(comp$uni_est), "_UE", "_Pctile")
# Compute IPD score and classification
score_matrix <- NULL
class_matrix <- NULL
#class breaks
for (c in 1:length(comp$uni_est)){
p <- unlist(comp$pct_est[,c])
breaks <- st_dev_breaks(p, 5, na.rm = TRUE)
score <- case_when(p < breaks[2] ~ 0,
p >= breaks[2] & p < breaks[3] ~ 1,
p >= breaks[3] & p < breaks[4] ~ 2,
p >= breaks[4] & p < breaks[5] ~ 3,
p >= breaks[5] ~ 4)
class <- case_when(score == 0 ~ "Well Below Average",
score == 1 ~ "Below Average",
score == 2 ~ "Average",
score == 3 ~ "Above Average",
score == 4 ~ "Well Above Average")
score_matrix <- cbind(score_matrix, score)
class_matrix <- cbind(class_matrix, class)
}
# Result: `score` and `class` have IPD scores and associated descriptions
score <- as_tibble(score_matrix)
names(score) <- str_replace(names(comp$uni_est), "_UE", "_Score")
class <- as_tibble(class_matrix)
names(class) <- str_replace(names(comp$uni_est), "_UE", "_Class")
# Compute total IPD score
score <- score %>% mutate(IPD_Score = rowSums(.))
## CLEANING
# Merge all information into a single df
ipd <- bind_cols(dl_counts, pct) %>%
bind_cols(., pct_moe) %>%
bind_cols(., percentile) %>%
bind_cols(., score) %>%
bind_cols(., class)
# Rename columns
names(ipd) <- str_replace(names(ipd), "_CE", "_CntEst")
names(ipd) <- str_replace(names(ipd), "_CM", "_CntMOE")
ipd <- ipd %>% mutate(STATEFP20 = str_sub(GEOID20, 1, 2),
COUNTYFP20 = str_sub(GEOID20, 3, 5),
NAME20 = str_sub(GEOID20, 6, 11),
U_TPopEst = F_UE,
U_TPopMOE = F_UM,
U_Pop6Est = LEP_UE,
U_Pop6MOE = LEP_UM,
U_PPovEst = LI_UE,
U_PPovMOE = LI_UM,
U_PNICEst = D_UE,
U_PNICMOE = D_UM) %>%
select(-ends_with("UE"), -ends_with("UM"))
# Reorder columns
ipd <- ipd %>% select(GEOID20, STATEFP20, COUNTYFP20, NAME20, sort(current_vars())) %>%
select(move_last(., c("IPD_Score", "U_TPopEst", "U_TPopMOE",
"U_Pop6Est", "U_Pop6MOE", "U_PPovEst",
"U_PPovMOE", "U_PNICEst", "U_PNICMOE")))
# Replace NA with NoData if character and 0 if numeric
ipd <- ipd %>% mutate_if(is.character, ~(ifelse(is.na(.), "NoData", .))) %>%
mutate_if(is.numeric, ~(ifelse(is.na(.), 0, .)))
# Append low-population tracts back onto dataset
slicer <- enframe(slicer, name = NULL, value = "GEOID20")
ipd <- plyr::rbind.fill(ipd, slicer)
## SUMMARY TABLES
# Replace 0 with NA for our purposes
ipd_summary <- ipd
ipd_summary[ipd_summary == 0]
# Count of tracts that fall in each bin
counts <- ipd_summary %>% select(ends_with("Class"))
export_counts <- apply(counts, 2, function(i) plyr::count(i))
for(i in 1:length(export_counts)){
export_counts[[i]]$var <- names(export_counts)[i]
}
export_counts <- map_dfr(export_counts, `[`, c("var", "x", "freq"))
# Format export
counts <- ipd_summary %>% select(ends_with("Class"))
export_counts <- apply(counts, 2, function(i) plyr::count(i))
for(i in 1:length(export_counts)){
export_counts[[i]]$var <- names(export_counts)[i]
}
export_counts <- map_dfr(export_counts, `[`, c("var", "x", "freq"))
colnames(export_counts) <- c("Variable", "Classification", "Count")
export_counts$Classification <- factor(export_counts$Classification,
levels = c("Well Below Average",
"Below Average",
"Average",
"Above Average",
"Well Above Average",
"NoData"))
export_counts <- arrange(export_counts, Variable, Classification)
# 2022-04-27 # replacing mutate_all with across, which supercedes it in dplyr
# was causing issues because replace_na was trying to apply to "Variable" column,
# a character data type
# across + where allows us to apply the function replace_na to just numeric columns
export_counts <- export_counts %>%
spread(Classification, Count) %>%
# mutate_all(~(replace_na(., 0))) %>%
mutate(across(where(is.numeric), ~replace_na(., 0))) %>%
mutate(TOTAL = rowSums(.[2:7], na.rm = TRUE))
# Bin break points
breaks <- ipd_summary %>% select(ends_with("PctEst"))
export_breaks <- round(mapply(st_dev_breaks, x = breaks, i = 5, na.rm = TRUE), digits = 3)
export_breaks <- as_tibble(export_breaks) %>%
mutate(Class = c("Min", "1", "2", "3", "4", "Max")) %>%
select(Class, current_vars())
# Minimum, median, mean, standard deviation, maximum
pcts <- ipd_summary %>% select(ends_with("PctEst"))
summary_data <- apply(pcts, MARGIN=2, description)
export_summary <- as_tibble(summary_data) %>%
mutate_all(round_2) %>%
mutate(Statistic = c("Minimum", "Median", "Mean", "SD", "Half-SD", "Maximum")) %>%
select(Statistic, current_vars())
# Population-weighted county means for each indicator
export_means <- dl_counts %>% select(GEOID20, ends_with("UE"), ends_with("CE")) %>%
select(GEOID20, sort(current_vars())) %>%
mutate(County = str_sub(GEOID20, 1, 5)) %>%
select(-GEOID20) %>%
group_by(County) %>%
summarize(D_PctEst = sum(D_CE) / sum(D_UE),
EM_PctEst = sum(EM_CE) / sum(EM_UE),
F_PctEst = sum(F_CE) / sum(F_UE),
FB_PctEst = sum(FB_CE) / sum(FB_UE),
LEP_PctEst = sum(LEP_CE) / sum(LEP_UE),
LI_PctEst = sum(LI_CE) / sum(LI_UE),
OA_PctEst = sum(OA_CE) / sum(OA_UE),
RM_PctEst = sum(RM_CE) / sum(RM_UE),
Y_PctEst = sum(Y_CE) / sum(Y_UE)) %>%
mutate_if(is.numeric, ~ . * 100) %>%
mutate_if(is.numeric, round_1)
# Replace NA with NoData if character and -99999 if numeric
#moved from line 352 so tract 42091206702 doesn't mess up breaks and means by indicator
ipd <- ipd %>% mutate_if(is.character, ~(ifelse(is.na(.), "NoData", .))) %>%
mutate_if(is.numeric, ~(ifelse(is.na(.), -99999, .)))
ipd_summary[ipd_summary == -99999] <- NA
ipd$STATEFP20 <- str_sub(ipd$GEOID20,1,2)
ipd$COUNTYFP20 <- str_sub(ipd$GEOID20,3,5)
ipd$NAME20 <- str_sub(ipd$GEOID20,6,11)
## EXPORT
options(tigris_use_cache = TRUE, tigris_class = "sf")
st <- str_sub(ipd_counties, 1, 2)
cty <- str_sub(ipd_counties, 3, 5)
trct <- map2(st, cty, ~{tracts(state = .x,
county = .y,
#cb = TRUE,
year = ipd_year)}) %>%
rbind_tigris() %>%
st_transform(., 26918) %>%
select(GEOID) %>%
left_join(., ipd, by = c("GEOID" = "GEOID20")) %>%
rename(GEOID20 = GEOID)
ipd$GEOID20 <- as.character(ipd$GEOID20)
ipd$STATEFP20 <- as.character(ipd$STATEFP20)
ipd$COUNTYFP20 <- as.character(ipd$COUNTYFP20)
ipd$NAME20 <- as.character(ipd$NAME20)
st_write(trct, here("outputs", "ipd.shp"), delete_dsn = TRUE, quiet = TRUE)
write_csv(ipd, here("outputs", "ipd.csv"))
write_csv(export_counts, here("outputs", "counts_by_indicator.csv"))
write_csv(export_breaks, here("outputs", "breaks_by_indicator.csv"))
write_csv(export_summary, here("outputs", "summary_by_indicator.csv"))
write_csv(export_means, here("outputs", "mean_by_county.csv"))