forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvariable.cpp
241 lines (204 loc) · 6.94 KB
/
variable.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
#include "torch/csrc/autograd/variable.h"
#include "torch/csrc/autograd/edge.h"
#include "torch/csrc/autograd/engine.h"
#include "torch/csrc/autograd/function.h"
#include "torch/csrc/autograd/functions/accumulate_grad.h"
#include "torch/csrc/autograd/functions/tensor.h"
#include "torch/csrc/autograd/generated/Functions.h"
#include "torch/csrc/autograd/generated/VariableType.h"
#include "torch/csrc/autograd/variable_version.h"
#include <ATen/ATen.h>
#include <c10/util/Exception.h>
#include <list>
#include <memory>
#include <mutex>
#include <stdexcept>
#include <string>
#include <vector>
namespace torch {
namespace autograd {
Variable::Impl::Impl(at::Tensor data, bool requires_grad, Edge gradient_edge)
: TensorImpl(data.type().type_id(), data.type().typeMeta(), data.type().allocator(), /* is variable */ true),
data_(std::move(data)),
grad_fn_(std::move(gradient_edge.function)),
requires_grad_(false),
is_view_(false),
output_nr_(gradient_edge.input_nr),
pyobj_(nullptr) {
// set_requires_grad also checks error conditions.
set_requires_grad(requires_grad);
AT_CHECK(
!grad_fn_ || !requires_grad_,
"requires_grad should be false if grad_fn is set");
if (!data_.defined()) {
throw std::runtime_error("data is undefined");
}
}
Variable::Impl::~Impl() = default;
int64_t Variable::Impl::numel() const {
return data_.numel();
}
IntList Variable::Impl::sizes() const {
return data_.sizes();
}
IntList Variable::Impl::strides() const {
return data_.strides();
}
bool Variable::Impl::is_contiguous() const {
AT_ERROR("variable impl does not have is_contiguous");
}
int64_t Variable::Impl::dim() const {
return data_.dim();
}
int64_t Variable::Impl::size(int64_t d) const {
return data_.size(d);
}
int64_t Variable::Impl::stride(int64_t d) const {
return data_.stride(d);
}
void Variable::Impl::resize_dim(int64_t ndim) {
AT_ERROR("variable impl does not have resize_dim");
}
void Variable::Impl::set_size(int64_t dim, int64_t new_size) {
AT_ERROR("variable impl does not have set_size");
}
void Variable::Impl::set_stride(int64_t dim, int64_t new_stride) {
AT_ERROR("variable impl does not have set_stride");
}
void Variable::Impl::set_storage_offset(int64_t storage_offset) {
AT_ERROR("variable impl does not have set_storage_offset");
}
void* Variable::Impl::slow_data() const {
return data_.unsafeGetTensorImpl()->slow_data();
}
const at::Storage& Variable::Impl::storage() const {
return data_.storage();
}
int64_t Variable::Impl::storage_offset() const {
return data_.storage_offset();
}
int64_t Variable::Impl::get_device_slow() const {
return data_.get_device();
}
std::shared_ptr<Function> Variable::Impl::get_grad_accumulator() {
if (grad_fn_) {
throw std::logic_error(
"get_grad_accumulator() should be only called on leaf Variables");
}
if (!requires_grad_) {
return nullptr;
}
std::lock_guard<std::mutex> lock(mutex_);
auto result = grad_accumulator_.lock();
if (result)
return result;
c10::raw::intrusive_ptr::incref(this);
auto intrusive_from_this = c10::intrusive_ptr<Variable::Impl>::reclaim(this);
result = std::make_shared<AccumulateGrad>(Variable(std::move(intrusive_from_this)));
grad_accumulator_ = result;
return result;
}
void Variable::Impl::detach_() {
if (is_view_) {
AT_ERROR("Can't detach views in-place. Use detach() instead");
}
set_requires_grad(false);
grad_fn_.reset();
output_nr_ = 0;
}
void Variable::Impl::backward(
c10::optional<Tensor> gradient,
bool keep_graph,
bool create_graph) {
std::vector<Edge> edges;
edges.emplace_back(grad_fn_, output_nr_);
std::vector<Variable> inputs;
if (!gradient.has_value()) {
gradient = make_variable(at::ones_like(data_), /*requires_grad=*/false);
}
inputs.push_back(std::move(as_variable_ref(*gradient)));
Engine::get_default_engine().execute(edges, inputs, keep_graph, create_graph);
}
void Variable::Impl::set_data(Tensor new_data) {
// Resets gradient accumulator if metadata is out of date
std::lock_guard<std::mutex> lock(mutex_);
auto prior_accumulator = grad_accumulator_.lock();
if (prior_accumulator) {
const auto prior_device = prior_accumulator->input_metadata(0).device();
const auto new_device = new_data.is_cuda() ? new_data.get_device() : -1;
if (new_data.type() != data_.type() || prior_device != new_device) {
grad_accumulator_.reset();
}
}
// Updates metadata
data_type_ = new_data.type().typeMeta();
type_id_ = new_data.type().type_id();
is_variable_ = true;
data_ = std::move(new_data);
}
void Variable::Impl::release_resources() {
data_.reset();
grad_.reset();
grad_fn_.reset();
hooks_.clear();
}
Variable::DifferentiableViewImpl::DifferentiableViewImpl(Variable base, at::Tensor data, Edge gradient_edge)
: Variable::Impl(std::move(data), false, std::move(gradient_edge)),
base_(std::move(base)) {
AT_CHECK(base_.defined(), "base is undefined");
if (base_.is_view()) {
base_ = base_.base();
}
is_view_ = true;
version_counter_ = base_.version_counter();
attr_version = version_counter_.current_version();
}
std::shared_ptr<Function>& Variable::DifferentiableViewImpl::get_grad_fn() {
std::lock_guard<std::mutex> lock(mutex_);
if (!grad_fn_ && !base_.requires_grad()) {
return grad_fn_;
}
auto current_version = version_counter_.current_version();
if (attr_version != current_version) {
AT_ASSERT(output_nr_ == 0);
auto fn = std::make_shared<generated::AsStridedBackward>();
fn->self_geometry = at::TensorGeometry(base_);
fn->size = sizes().vec();
fn->stride = strides().vec();
fn->storage_offset = data_.storage_offset();
fn->set_next_edges(collect_next_edges(base_));
fn->add_input_metadata(
base_.type()
, sizes() // Note: sizes(), not base_.sizes(), is intentional
, base_.is_cuda() ? base_.get_device() : -1);
grad_fn_ = std::move(fn);
attr_version = current_version;
}
return grad_fn_;
}
void Variable::DifferentiableViewImpl::rebase_history(Edge gradient_edge) {
AT_ASSERT(gradient_edge.input_nr == 0);
AT_ASSERT(gradient_edge.function);
AT_CHECK(
gradient_edge.function->num_inputs() == 1,
"Functions which modify views in-place must return a single Variable");
this->output_nr_ = gradient_edge.input_nr;
auto copy_slices = std::make_shared<CopySlices>(
base_, at::TensorGeometry(data_), std::move(gradient_edge.function));
base_.set_gradient_edge({std::move(copy_slices), 0});
get_grad_fn(); // trigger an update to the view's grad_fn
}
void Variable::DifferentiableViewImpl::release_resources() {
Variable::Impl::release_resources();
base_.reset();
}
void Variable::rebase_history(Edge gradient_edge) {
AT_ASSERT(gradient_edge.function != nullptr);
if (is_view()) {
auto& impl = static_cast<Variable::DifferentiableViewImpl&>(*get());
impl.rebase_history(std::move(gradient_edge));
} else {
set_gradient_edge(std::move(gradient_edge));
}
}
}} // namespace torch::autograd