7
7
from hypothesis import given
8
8
9
9
import caffe2 .python .hypothesis_test_util as hu
10
+ import caffe2 .python .serialized_test .serialized_test_util as serial
10
11
import hypothesis .strategies as st
11
12
import numpy as np
12
13
import itertools as it
13
14
14
15
15
- class TestReduceOps (hu . HypothesisTestCase ):
16
+ class TestReduceOps (serial . SerializedTestCase ):
16
17
def run_reduce_op_test_impl (
17
18
self , op_name , X , axes , keepdims , ref_func , gc , dc ):
18
19
if axes is None :
@@ -54,8 +55,9 @@ def run_reduce_op_test(
54
55
self .run_reduce_op_test_impl (
55
56
op_name , X , axes , keepdims , ref_func , gc , dc )
56
57
57
- @given (X = hu .tensor (max_dim = 3 , dtype = np .float32 ), keepdims = st .booleans (),
58
- num_axes = st .integers (1 , 3 ), ** hu .gcs )
58
+ @serial .given (
59
+ X = hu .tensor (max_dim = 3 , dtype = np .float32 ), keepdims = st .booleans (),
60
+ num_axes = st .integers (1 , 3 ), ** hu .gcs )
59
61
def test_reduce_min (self , X , keepdims , num_axes , gc , dc ):
60
62
X_dims = X .shape
61
63
X_size = X .size
@@ -65,8 +67,9 @@ def test_reduce_min(self, X, keepdims, num_axes, gc, dc):
65
67
self .run_reduce_op_test (
66
68
"ReduceMin" , X , keepdims , num_axes , np .min , gc , dc )
67
69
68
- @given (X = hu .tensor (max_dim = 3 , dtype = np .float32 ), keepdims = st .booleans (),
69
- num_axes = st .integers (1 , 3 ), ** hu .gcs )
70
+ @serial .given (
71
+ X = hu .tensor (max_dim = 3 , dtype = np .float32 ), keepdims = st .booleans (),
72
+ num_axes = st .integers (1 , 3 ), ** hu .gcs )
70
73
def test_reduce_max (self , X , keepdims , num_axes , gc , dc ):
71
74
X_dims = X .shape
72
75
X_size = X .size
@@ -84,7 +87,7 @@ def test_reduce_sum(self, n, m, k, t, keepdims, num_axes, gc, dc):
84
87
self .run_reduce_op_test (
85
88
"ReduceSum" , X , keepdims , num_axes , np .sum , gc , dc )
86
89
87
- @given (X = hu .tensor (dtype = np .float32 ), keepdims = st .booleans (),
90
+ @serial . given (X = hu .tensor (dtype = np .float32 ), keepdims = st .booleans (),
88
91
num_axes = st .integers (1 , 4 ), ** hu .gcs )
89
92
def test_reduce_mean (self , X , keepdims , num_axes , gc , dc ):
90
93
self .run_reduce_op_test (
@@ -99,7 +102,7 @@ def test_reduce_l1(self, n, m, k, keepdims, num_axes, gc, dc):
99
102
self .run_reduce_op_test (
100
103
"ReduceL1" , X , keepdims , num_axes , getNorm (1 ), gc , dc )
101
104
102
- @given (n = st .integers (1 , 5 ), m = st .integers (1 , 5 ), k = st .integers (1 , 5 ),
105
+ @serial . given (n = st .integers (1 , 5 ), m = st .integers (1 , 5 ), k = st .integers (1 , 5 ),
103
106
keepdims = st .booleans (), num_axes = st .integers (1 , 3 ), ** hu .gcs_cpu_only )
104
107
def test_reduce_l2 (self , n , m , k , keepdims , num_axes , gc , dc ):
105
108
X = np .random .randn (n , m , k ).astype (np .float32 )
@@ -119,7 +122,7 @@ def norm(X, axis, keepdims):
119
122
return norm
120
123
121
124
122
- class TestReduceFrontReductions (hu . HypothesisTestCase ):
125
+ class TestReduceFrontReductions (serial . SerializedTestCase ):
123
126
def grad_variant_input_test (self , grad_op_name , X , ref , num_reduce_dim ):
124
127
workspace .ResetWorkspace ()
125
128
@@ -200,7 +203,7 @@ def reduce_op_test(self, op_name, op_ref, in_data, in_names,
200
203
self .assertGradientChecks (
201
204
device , op , in_data , 0 , [0 ], stepsize = 1e-2 , threshold = 1e-2 )
202
205
203
- @given (num_reduce_dim = st .integers (0 , 4 ), ** hu .gcs )
206
+ @serial . given (num_reduce_dim = st .integers (0 , 4 ), ** hu .gcs )
204
207
def test_reduce_front_sum (self , num_reduce_dim , gc , dc ):
205
208
X = np .random .rand (7 , 4 , 3 , 5 ).astype (np .float32 )
206
209
@@ -265,7 +268,7 @@ def ref_sum(X, lengths):
265
268
"ReduceFrontSum" , ref_sum , [X , lengths ], ["input" , "lengths" ],
266
269
num_reduce_dim , gc )
267
270
268
- @given (num_reduce_dim = st .integers (0 , 4 ), ** hu .gcs )
271
+ @serial . given (num_reduce_dim = st .integers (0 , 4 ), ** hu .gcs )
269
272
def test_reduce_front_mean (self , num_reduce_dim , gc , dc ):
270
273
X = np .random .rand (6 , 7 , 8 , 2 ).astype (np .float32 )
271
274
@@ -296,7 +299,7 @@ def ref_mean(X, lengths):
296
299
"ReduceFrontMean" , ref_mean , [X , lengths ], ["input" , "lengths" ],
297
300
num_reduce_dim , gc )
298
301
299
- @given (num_reduce_dim = st .integers (0 , 4 ), ** hu .gcs )
302
+ @serial . given (num_reduce_dim = st .integers (0 , 4 ), ** hu .gcs )
300
303
def test_reduce_front_max (self , num_reduce_dim , gc , dc ):
301
304
X = np .random .rand (6 , 7 , 8 , 2 ).astype (np .float32 )
302
305
@@ -325,7 +328,7 @@ def ref_max(X, lengths):
325
328
"ReduceFrontMax" , num_reduce_dim , gc , dc , [X , lengths ],
326
329
["X" , "lengths" ], ref_max )
327
330
328
- @given (num_reduce_dim = st .integers (0 , 4 ), ** hu .gcs )
331
+ @serial . given (num_reduce_dim = st .integers (0 , 4 ), ** hu .gcs )
329
332
def test_reduce_back_max (self , num_reduce_dim , gc , dc ):
330
333
X = np .random .rand (6 , 7 , 8 , 2 ).astype (np .float32 )
331
334
@@ -386,7 +389,7 @@ def ref_sum(X, lengths):
386
389
"ReduceBackSum" , ref_sum , [X , lengths ], ["input" , "lengths" ],
387
390
num_reduce_dim , gc )
388
391
389
- @given (num_reduce_dim = st .integers (0 , 4 ), ** hu .gcs )
392
+ @serial . given (num_reduce_dim = st .integers (0 , 4 ), ** hu .gcs )
390
393
def test_reduce_back_mean (self , num_reduce_dim , dc , gc ):
391
394
X = np .random .rand (6 , 7 , 8 , 2 ).astype (np .float32 )
392
395
0 commit comments