-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy path11378.cpp
163 lines (161 loc) · 4.81 KB
/
11378.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
# pragma GCC optimize ("O3")
# pragma GCC optimize ("Ofast")
# pragma GCC optimize ("unroll-loops")
#include <bits/stdc++.h>
#pragma warning(disable:4996)
#pragma comment(linker, "/STACK:336777216")
using namespace std;
typedef long long ll;
typedef pair<int, int> pii;
typedef vector<int> vi;
typedef tuple<int, int, int> ti3;
typedef tuple<int, int, int, int> ti4;
typedef stack<int> si;
typedef queue<int> qi;
typedef priority_queue<int> pqi;
typedef pair<ll, ll> pll;
typedef vector<ll> vl;
typedef tuple<ll, ll, ll> tl3;
typedef tuple<ll, ll, ll, ll> tl4;
typedef stack<ll> sl;
typedef queue<ll> ql;
typedef priority_queue<ll> pql;
int dx[4] = { 1,-1,0,0 };
int dy[4] = { 0,0,1,-1 };
int ddx[8] = { 0,0,1,1,1,-1,-1,-1 }, ddy[8] = { 1,-1,1,0,-1,1,0,-1 };
ll POW(ll a, ll b, ll MMM) { ll ret = 1; for (; b; b >>= 1, a = (a*a) % MMM)if (b & 1)ret = (ret*a) % MMM; return ret; }
ll GCD(ll a, ll b) { return b ? GCD(b, a%b) : a; }
ll LCM(ll a, ll b) { if (a == 0 || b == 0)return a + b; return a * (b / GCD(a, b)); }
ll INV(ll a, ll m) {
ll m0 = m, y = 0, x = 1;
if (m == 1) return 0;
while (a > 1) {
ll q = a / m;
ll t = m;
m = a % m, a = t;
t = y;
y = x - q * y;
x = t;
}
if (x < 0) x += m0;
return x;
}
pll EXGCD(ll a, ll b) {
if (b == 0) return { 1,0 };
auto t = EXGCD(b, a%b);
return { t.second,t.first - t.second*(a / b) };
}
bool OOB(ll x, ll y, ll N, ll M) { return 0 > x || x >= N || 0 > y || y >= M; }
#define X first
#define Y second
#define rep(i,a,b) for(int i = a; i < b; i++)
#define pb(x) push_back(x)
#define all(x) (x).begin(), (x).end()
#define sf1(a) cin >> a
#define sf2(a,b) cin >> a >> b
#define sf3(a,b,c) cin >> a >> b >> c
#define sf4(a,b,c,d) cin >> a >> b >> c >> d
#define sf5(a,b,c,d,e) cin >> a >> b >> c >> d >> e
#define sf6(a,b,c,d,e,f) cin >> a >> b >> c >> d >> e >> f
#define pf1(a) cout << (a) << ' '
#define pf2(a,b) cout << (a) << ' ' << (b) << ' '
#define pf3(a,b,c) cout << (a) << ' ' << (b) << ' '<< (c) << ' '
#define pf4(a,b,c,d) cout << (a) << ' ' << (b) << ' '<< (c) << ' '<< (d) << ' '
#define pf5(a,b,c,d,e) cout << (a) << ' ' << (b) << ' '<< (c) << ' '<< (d) << ' '<< (e) << ' '
#define pf6(a,b,c,d,e,f) cout << (a) << ' ' << (b) << ' '<< (c) << ' '<< (d) << ' '<< (e) << ' ' << (f) << ' '
#define pf0l() cout << '\n';
#define pf1l(a) cout << (a) << '\n'
#define pf2l(a,b) cout << (a) << ' ' << (b) << '\n'
#define pf3l(a,b,c) cout << (a) << ' ' << (b) << ' '<< (c) << '\n'
#define pf4l(a,b,c,d) cout << (a) << ' ' << (b) << ' '<< (c) << ' '<< (d) << '\n'
#define pf5l(a,b,c,d,e) cout << (a) << ' ' << (b) << ' '<< (c) << ' '<< (d) << ' '<< (e) << '\n'
#define pf6l(a,b,c,d,e,f) cout << (a) << ' ' << (b) << ' '<< (c) << ' '<< (d) << ' '<< (e) << ' ' << (f) << '\n'
#define pfvec(V) for(auto const &t : V) pf1(t)
#define pfvecl(V) for(auto const &t : V) pf1(t); pf0l()
void dinic_bfs(vi& level, vector<vi >& C, vector<vi >& F, vector< vi >& adj, int N, int source, int sink) {
fill(all(level), -1);
level[source] = 0;
qi Q;
Q.push(source);
while (!Q.empty()) {
int cur = Q.front();
Q.pop();
for (auto next : adj[cur]) {
if (level[next] == -1 && C[cur][next] > F[cur][next]) {
level[next] = level[cur] + 1;
Q.push(next);
}
}
}
}
int dinic_dfs(int cur, int flow, vi& level, vector<vi >& C, vector<vi >& F, vector< vi >& adj, int N, int sink) {
if (cur == sink) return flow;
for (auto next : adj[cur]) {
if (level[next] == level[cur] + 1 && C[cur][next] > F[cur][next]) {
int cur_flow = dinic_dfs(next, min(C[cur][next] - F[cur][next],flow), level,C,F,adj,N,sink);
if (cur_flow > 0) {
F[cur][next] += cur_flow;
F[next][cur] -= cur_flow;
return cur_flow;
}
}
}
return 0;
}
int NetworkFlow(vector<vi >& C, vector<vi >& F, vector< vi >& adj, int N, int source, int sink) {
int ret = 0;
vi level(N);
while (true) {
dinic_bfs(level, C, F, adj, N, source, sink);
if (level[sink] == -1) break; // sink에 닿을 수 없을 경우
while (true) {
int flow = dinic_dfs(source, 0x7f7f7f7f, level, C, F, adj, N, sink);
if (flow == 0) break;
ret += flow;
}
}
return ret;
}
int main(void) {
ios::sync_with_stdio(false);
cin.tie(0);
int N, M, K;
sf3(N, M, K);
vector< vi > C(N+M+3);
vector< vi > F(N + M + 3);
vector< vi > adj(N + M + 3);
rep(i, 0, N + M + 3) {
C[i].resize(N + M + 3);
F[i].resize(N + M + 3);
}
int source = 0;
int sink = N + M + 1;
C[source][N + M + 2] = K;
adj[source].pb(N + M + 2);
adj[N + M + 2].pb(source);
rep(i, 1, N + 1) {
C[N + M + 2][i] = K;
adj[N + M + 2].pb(i);
adj[i].pb(N + M + 2);
C[source][i] = 1;
adj[source].pb(i);
adj[i].pb(source);
}
rep(i, N + 1, N+M + 1) {
C[i][sink] = 1;
adj[i].pb(sink);
adj[sink].pb(i);
}
rep(i, 1, N+1) {
int cnt;
sf1(cnt);
while (cnt--) {
int a;
sf1(a);
C[i][N + a] = 1;
adj[i].pb(N + a);
adj[N + a].pb(i);
}
}
pf1(NetworkFlow(C, F, adj, N + M + 3, source, sink));
}