forked from gyf135/2D-DDP
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathDDP_CNN.py
207 lines (159 loc) · 7.32 KB
/
DDP_CNN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
import tensorflow as tf
tf.random.set_seed(10)
import random
random.seed()
#import matplotlib
import os
#import pickle
import numpy as np
#import pandas as pd
##import tensorflow.compat.v1 as tf
#tf.disable_v2_behavior()
#import xarray as xr
#import seaborn as sns
from keras import layers
from keras.backend.tensorflow_backend import clear_session
from keras.layers import Input, Convolution2D, Convolution1D, MaxPooling2D, Dense, Dropout, \
Flatten, concatenate, Activation, Reshape, \
UpSampling2D,ZeroPadding2D
from keras.layers import Dense
from keras import Sequential
import h5py
import keras
#from pylab import plt
#from matplotlib import cm
from scipy.io import loadmat,savemat
# Memory usage
import psutil
process = psutil.Process(os.getpid())
print('Memory used by the process:')
print(process.memory_info().rss) # in bytes
import gc
## Data set has 100k data points
trainN=13000
testN=2000
lead=1;
batch_size = 32
num_epochs = 2
pool_size = 2
drop_prob=0.0
conv_activation='relu'
Nlat=256
Nlon=256
n_channels=2
NT = 7500 # Numer of snapshots per file
numDataset = 5 # number of dataset / 2
print('Start....')
input_normalized=np.zeros([trainN+testN,Nlon, Nlat,n_channels],np.float32)
output_normalized=np.zeros([trainN+testN,Nlon,Nlat,1],np.float32)
def reset_keras():
sess = tf.compat.v1.keras.backend.get_session()
tf.compat.v1.keras.backend.clear_session()
sess.close()
sess = tf.compat.v1.keras.backend.get_session()
try:
del classifier # this is from global space - change this as you need
except:
pass
# use the same config as you used to create the session
config = tf.compat.v1.ConfigProto()
config.gpu_options.per_process_gpu_memory_fraction = 1
config.gpu_options.visible_device_list = "0"
tf.compat.v1.keras.backend.set_session(tf.compat.v1.Session(config=config))
def build_model(conv_depth, kernel_size, hidden_size, n_hidden_layers, lr):
model = keras.Sequential([
## Convolution with dimensionality reduction (similar to Encoder in an autoencoder)
Convolution2D(conv_depth, kernel_size, padding='same', activation=conv_activation, input_shape=(Nlon,Nlat,n_channels)),
#layers.MaxPooling2D(pool_size=pool_size),
#Dropout(drop_prob),
Convolution2D(conv_depth, kernel_size, padding='same', activation=conv_activation),
#layers.MaxPooling2D(pool_size=pool_size),
# end "encoder"
Convolution2D(conv_depth, kernel_size, padding='same', activation=conv_activation),
#layers.MaxPooling2D(pool_size=pool_size),
Convolution2D(conv_depth, kernel_size, padding='same', activation=conv_activation),
#layers.MaxPooling2D(pool_size=pool_size),
Convolution2D(conv_depth, kernel_size, padding='same', activation=conv_activation),
#layers.MaxPooling2D(pool_size=pool_size),
#Convolution2D(conv_depth, kernel_size, padding='same', activation=conv_activation),
#layers.MaxPooling2D(pool_size=pool_size),
#Convolution2D(conv_depth, kernel_size, padding='same', activation=conv_activation),
#layers.MaxPooling2D(pool_size=pool_size),
# dense layers (flattening and reshaping happens automatically)
] + [keras.layers.Dense(hidden_size, activation='sigmoid') for i in range(n_hidden_layers)] +
[
# start "Decoder" (mirror of the encoder above)
#Convolution2D(conv_depth, kernel_size, padding='same', activation=conv_activation),
#layers.UpSampling2D(size=pool_size),
#Convolution2D(conv_depth, kernel_size, padding='same', activation=conv_activation),
#layers.UpSampling2D(size=pool_size),
Convolution2D(conv_depth, kernel_size, padding='same', activation=conv_activation),
#layers.UpSampling2D(size=pool_size),
Convolution2D(conv_depth, kernel_size, padding='same', activation=conv_activation),
#layers.UpSampling2D(size=pool_size),
Convolution2D(conv_depth, kernel_size, padding='same', activation=conv_activation),
#layers.UpSampling2D(size=pool_size),
Convolution2D(conv_depth, kernel_size, padding='same', activation=conv_activation),
#layers.UpSampling2D(size=pool_size),
Convolution2D(conv_depth, kernel_size, padding='same', activation=conv_activation),
#layers.UpSampling2D(size=pool_size),
layers.Convolution2D(1, kernel_size, padding='same', activation=None)
]
)
optimizer= keras.optimizers.adam(lr=lr)
model.compile(loss='mean_squared_error', optimizer = optimizer)
return model
params = {'conv_depth': 64, 'hidden_size': 5000,
'kernel_size': 5, 'lr': 0.00001, 'n_hidden_layers': 0}
for i in range(0,numDataset):
Filename = '/oasis/scratch/comet/yg62/temp_project/CNN/Re32k/split Data v2/Data' + str(i*2) + '.mat'
with h5py.File(Filename, 'r') as f:
input_normalized[0:NT,:,:,:]=np.array(f['input_normalized'],np.float32).T
output_normalized[0:NT,:,:,:]=np.array(f['output_normalized'],np.float32).T
f.close()
Filename = '/oasis/scratch/comet/yg62/temp_project/CNN/Re32k/split Data v2/Data' + str(i*2+1) + '.mat'
with h5py.File(Filename, 'r') as f:
input_normalized[NT:,:,:,:]=np.array(f['input_normalized'],np.float32).T
output_normalized[NT:,:,:,:]=np.array(f['output_normalized'],np.float32).T
f.close()
index=np.random.permutation(trainN+testN)
input_normalized=input_normalized[index,:,:,:]
output_normalized=output_normalized[index,:,:,:]
print('Finish Initialization')
print(np.shape(input_normalized))
print('Memory taken by input:')
print(input_normalized.nbytes)
print('Memory taken by output:')
print(np.shape(output_normalized))
print(output_normalized.nbytes)
# Reset and free GPU memory
#tf.keras.backend.clear_session()
reset_keras()
model = build_model(**params)
#if i != 0:
model.load_weights('./weights_cnn_KT') # load model weight from last time
print(model.summary())
hist = model.fit(input_normalized[0:trainN,:,:,:], output_normalized[0:trainN,:,:,:],
batch_size = batch_size,shuffle='True',
verbose=1,
epochs = num_epochs,
validation_data=(input_normalized[trainN:,:,:,:],output_normalized[trainN:,:,:,:]))
model.save_weights('./weights_cnn_KT')
#loss = hist.history['loss']
#val_loss = hist.history['val_loss']
#savemat('loss' + str(i) + '.mat' ,dict([('trainLoss',loss),('valLoss',val_loss)]))
#del input_normalized
#del output_normalized
del hist
#del f
if i != numDataset-1:
del model
gc.collect()
process = psutil.Process(os.getpid())
print('Memory used by the process:')
print(process.memory_info().rss) # in bytes
print('finished training dataset' + str(i+1) + '/' + str(numDataset))
prediction=model.predict(input_normalized[trainN:,:,:,:])
#print(np.shape(output_normalized[trainN:,:,:,:]))
#input_normalized[trainN:trainN+100,:,:,:]),
savemat('prediction_KT.mat',dict([('test',output_normalized[trainN:trainN+100,:,:,:]),('input',input_normalized[trainN:trainN+100,:,:,:]),('prediction',prediction[0:100,:,:])]))