|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": {}, |
| 6 | + "source": [ |
| 7 | + "This notebook illustrates some features of the JAX library in the context of a simple linear regression problem. In real life, we could fit this model much more simply by using the the least squares estimator\n", |
| 8 | + "$$\n", |
| 9 | + "\\hat{\\beta}=(X^T X)^{-1}X^T y,\n", |
| 10 | + "$$\n", |
| 11 | + "but here we will optimize the mean-square error loss function via gradient descent." |
| 12 | + ] |
| 13 | + }, |
| 14 | + { |
| 15 | + "cell_type": "code", |
| 16 | + "execution_count": 1, |
| 17 | + "metadata": {}, |
| 18 | + "outputs": [ |
| 19 | + { |
| 20 | + "name": "stdout", |
| 21 | + "output_type": "stream", |
| 22 | + "text": [ |
| 23 | + "seed is 1692330859\n" |
| 24 | + ] |
| 25 | + } |
| 26 | + ], |
| 27 | + "source": [ |
| 28 | + "import jax\n", |
| 29 | + "import jax.numpy as jnp\n", |
| 30 | + "import jax.random as random\n", |
| 31 | + "from collections import namedtuple\n", |
| 32 | + "import time\n", |
| 33 | + "SEED = int(time.time())\n", |
| 34 | + "print(f\"seed is {SEED}\")\n", |
| 35 | + "key = random.key(SEED)\n", |
| 36 | + "ModelParameters = namedtuple('ModelParameters', 'w b')" |
| 37 | + ] |
| 38 | + }, |
| 39 | + { |
| 40 | + "cell_type": "code", |
| 41 | + "execution_count": 2, |
| 42 | + "metadata": {}, |
| 43 | + "outputs": [], |
| 44 | + "source": [ |
| 45 | + "@jax.jit\n", |
| 46 | + "def predict(params: ModelParameters, x: jnp.array) -> jnp.array:\n", |
| 47 | + " return params.w.dot(x) + params.b\n", |
| 48 | + "vpredict = jax.vmap(predict, in_axes=[None, 0])" |
| 49 | + ] |
| 50 | + }, |
| 51 | + { |
| 52 | + "cell_type": "markdown", |
| 53 | + "metadata": {}, |
| 54 | + "source": [ |
| 55 | + "JAX random numbers are a bit weird -- we have to push around some state in the `key` variable." |
| 56 | + ] |
| 57 | + }, |
| 58 | + { |
| 59 | + "cell_type": "code", |
| 60 | + "execution_count": 3, |
| 61 | + "metadata": {}, |
| 62 | + "outputs": [], |
| 63 | + "source": [ |
| 64 | + "xs = random.normal(key, shape=(200,1))\n", |
| 65 | + "key, _ = random.split(key)\n", |
| 66 | + "Wtrue = random.normal(key, shape=(1,))\n", |
| 67 | + "key, _ = random.split(key)\n", |
| 68 | + "btrue = random.normal(key, shape=(1,))\n", |
| 69 | + "true_params = ModelParameters(Wtrue, btrue)\n", |
| 70 | + "true_ys = vpredict(true_params, xs)\n", |
| 71 | + "\n", |
| 72 | + "key, _ = random.split(key)\n", |
| 73 | + "W = random.normal(key, shape=(1,))\n", |
| 74 | + "key, _ = random.split(key)\n", |
| 75 | + "b = random.normal(key, shape=(1,))\n", |
| 76 | + "params = ModelParameters(W, b)" |
| 77 | + ] |
| 78 | + }, |
| 79 | + { |
| 80 | + "cell_type": "markdown", |
| 81 | + "metadata": {}, |
| 82 | + "source": [ |
| 83 | + "Here we define our loss function, the mean of the square of the errors." |
| 84 | + ] |
| 85 | + }, |
| 86 | + { |
| 87 | + "cell_type": "code", |
| 88 | + "execution_count": 4, |
| 89 | + "metadata": {}, |
| 90 | + "outputs": [], |
| 91 | + "source": [ |
| 92 | + "@jax.jit\n", |
| 93 | + "def mse(parameters: ModelParameters, xs: jnp.array, ys: jnp.array) -> jnp.array:\n", |
| 94 | + " y_hats = vpredict(parameters, xs)\n", |
| 95 | + " return jax.numpy.mean(jnp.square(y_hats - ys))\n", |
| 96 | + "grad_mse = jax.grad(mse)" |
| 97 | + ] |
| 98 | + }, |
| 99 | + { |
| 100 | + "cell_type": "markdown", |
| 101 | + "metadata": {}, |
| 102 | + "source": [ |
| 103 | + "Below the model is fitted." |
| 104 | + ] |
| 105 | + }, |
| 106 | + { |
| 107 | + "cell_type": "code", |
| 108 | + "execution_count": 5, |
| 109 | + "metadata": {}, |
| 110 | + "outputs": [ |
| 111 | + { |
| 112 | + "name": "stdout", |
| 113 | + "output_type": "stream", |
| 114 | + "text": [ |
| 115 | + "ModelParameters(w=Array([0.2682777], dtype=float32), b=Array([0.1782908], dtype=float32))\n", |
| 116 | + "ModelParameters(w=Array([1.8501179], dtype=float32), b=Array([0.6013752], dtype=float32))\n", |
| 117 | + "ModelParameters(w=Array([2.0439496], dtype=float32), b=Array([0.6323448], dtype=float32))\n", |
| 118 | + "ModelParameters(w=Array([2.0680373], dtype=float32), b=Array([0.63335055], dtype=float32))\n", |
| 119 | + "ModelParameters(w=Array([2.0710773], dtype=float32), b=Array([0.6330958], dtype=float32))\n", |
| 120 | + "ModelParameters(w=Array([2.0714667], dtype=float32), b=Array([0.63301265], dtype=float32))\n", |
| 121 | + "ModelParameters(w=Array([2.0715175], dtype=float32), b=Array([0.6329955], dtype=float32))\n", |
| 122 | + "ModelParameters(w=Array([2.0715194], dtype=float32), b=Array([0.6329933], dtype=float32))\n", |
| 123 | + "ModelParameters(w=Array([2.0715194], dtype=float32), b=Array([0.6329933], dtype=float32))\n", |
| 124 | + "ModelParameters(w=Array([2.0715194], dtype=float32), b=Array([0.6329933], dtype=float32))\n" |
| 125 | + ] |
| 126 | + } |
| 127 | + ], |
| 128 | + "source": [ |
| 129 | + "lr = 1e-2\n", |
| 130 | + "for i in range(1000):\n", |
| 131 | + " batch_grads = grad_mse(params, xs, true_ys)\n", |
| 132 | + " params = ModelParameters(params.w - lr * batch_grads.w, params.b - lr * batch_grads.b)\n", |
| 133 | + " if i % 100 == 0:\n", |
| 134 | + " print(params)" |
| 135 | + ] |
| 136 | + }, |
| 137 | + { |
| 138 | + "cell_type": "markdown", |
| 139 | + "metadata": {}, |
| 140 | + "source": [ |
| 141 | + "Finally, let's compare the true parameters to the learned ones." |
| 142 | + ] |
| 143 | + }, |
| 144 | + { |
| 145 | + "cell_type": "code", |
| 146 | + "execution_count": 6, |
| 147 | + "metadata": {}, |
| 148 | + "outputs": [], |
| 149 | + "source": [ |
| 150 | + "assert jnp.isclose(true_params.w, params.w)\n", |
| 151 | + "assert jnp.isclose(true_params.b, params.b)" |
| 152 | + ] |
| 153 | + } |
| 154 | + ], |
| 155 | + "metadata": { |
| 156 | + "kernelspec": { |
| 157 | + "display_name": ".venv", |
| 158 | + "language": "python", |
| 159 | + "name": "python3" |
| 160 | + }, |
| 161 | + "language_info": { |
| 162 | + "codemirror_mode": { |
| 163 | + "name": "ipython", |
| 164 | + "version": 3 |
| 165 | + }, |
| 166 | + "file_extension": ".py", |
| 167 | + "mimetype": "text/x-python", |
| 168 | + "name": "python", |
| 169 | + "nbconvert_exporter": "python", |
| 170 | + "pygments_lexer": "ipython3", |
| 171 | + "version": "3.10.12" |
| 172 | + }, |
| 173 | + "orig_nbformat": 4 |
| 174 | + }, |
| 175 | + "nbformat": 4, |
| 176 | + "nbformat_minor": 2 |
| 177 | +} |
0 commit comments