-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathrun.py
305 lines (268 loc) · 9.69 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
import dataclasses
import importlib.util
import shutil
import sys
import time
from image_hijacks.config import Config
import pathspec
import click
import os
from pathlib import Path
from typing import Any, Dict, List, Optional, Tuple
import lightning.pytorch as pl
from lightning.fabric import seed_everything
from lightning.pytorch.loggers import Logger, TensorBoardLogger
from lightning.pytorch.loggers.wandb import WandbLogger
from lightning.pytorch.callbacks import RichProgressBar, ModelCheckpoint
import torch
from jaxtyping import Float, Integer
from torch import Tensor
from torch.utils.data import DataLoader
import wandb
import uuid
import pickle
from image_hijacks.utils import load_config_list
@click.group()
def cli():
pass
def transform_dict(config_dict: Dict, expand: bool = True):
"""
General function to transform any dictionary into wandb config acceptable format
(This is mostly due to datatypes that are not able to fit into YAML format which makes wandb angry)
The expand argument is used to expand iterables into dictionaries so that these configs can be used when compare across runs
https://gist.github.com/Microsheep/11edda9dee7c1ba0c099709eb7f8bea7
"""
ret: Dict[str, Any] = {}
for k, v in config_dict.items():
if v is None or isinstance(v, (int, float, str)):
ret[k] = v
elif isinstance(v, (list, tuple, set)):
# Need to check if item in iterable is YAML-friendly
t = transform_dict(dict(enumerate(v)), expand)
# Transform back to iterable if expand is False
ret[k] = t if expand else [t[i] for i in range(len(v))]
elif isinstance(v, dict):
ret[k] = transform_dict(v, expand)
else:
# Transform to YAML-friendly (str) format
# Need to handle both Classes, Callables, Object Instances
# Custom Classes might not have great __repr__ so __name__ might be better in these cases
vname = v.__name__ if hasattr(v, "__name__") else v.__class__.__name__
ret[k] = f"{v.__module__}:{vname}"
return ret
def backup_parent_codebase(src: Path, dst: Path) -> Optional[Path]:
"""Makes a ZIP copy of the codebase containing the file / directory src,
respecting the .gitignore file, saved to dst/codebase-%Y%m%d-%H%M%S.zip
We walk up the directory tree until we encounter the first folder containing a
.gitignore file.
Args:
src (Path): Path within codebase
dst (Path): Path to save ZIP backup
Returns:
Path: The full path to the backed-up codebase
"""
# taken from https://waylonwalker.com/til/gitignore-python/
while not (src / ".gitignore").exists():
if src == src.parent:
return None
src = src.parent
files = src.glob("**/*")
lines = (src / ".gitignore").read_text().splitlines() + [
".git",
"experiments",
"wandb",
]
spec = pathspec.PathSpec.from_lines("gitwildmatch", lines)
matched_files = [file for file in files if not spec.match_file(str(file))]
codebase_name = f'codebase-{time.strftime("%Y%m%d-%H%M%S")}-{uuid.uuid4()}'
dst_folder = dst / codebase_name
for file in matched_files:
if os.path.isdir(file):
continue
dst_path = dst_folder / file.relative_to(src)
os.makedirs(os.path.dirname(dst_path), exist_ok=True)
shutil.copy(file, dst_path)
shutil.make_archive(str(dst_folder).rstrip("/"), "zip", dst_folder)
shutil.rmtree(dst_folder)
return dst / f"{codebase_name}.zip"
# fmt: off
@cli.command()
@click.option("--config_path", type=click.Path(path_type=Path), required=True)
@click.option("--log_dir", type=click.Path(path_type=Path), required=True)
@click.option("--playground/--no-playground", type=bool, default=False)
@click.option("--job_id", type=int, default=0)
@click.option("--wandb_project", type=str, default=None)
@click.option("--wandb_entity", type=str, default=None)
# fmt: on
def train(
config_path: Path,
log_dir: Path,
playground: bool,
job_id: int,
wandb_project: str,
wandb_entity: str,
):
torch.set_float32_matmul_precision("high")
exp_path = config_path.parent
exp_name = exp_path.name
print(f"Experiment {exp_name}")
print(f"Loading config from {config_path}")
configs = load_config_list(config_path)
run_name, cfg_gen = configs[job_id]
config = cfg_gen()
print(f"Run {run_name}")
seed_everything(config.seed)
print("Dumping config:")
print(config)
if playground:
print("In playground mode: not backing up codebase")
else:
save_path = log_dir / run_name # type: ignore
backup_path = backup_parent_codebase(
Path(os.path.realpath(__file__)).parent, save_path
)
if backup_path is not None:
print(f"Codebase backed up at {backup_path}")
else:
print("Failed to back up codebase")
# Validation arguments
callbacks_args = {}
trainer_args = {}
if config.validate_every is None:
# TODO: implement
assert 1 == 0
else:
n, val_on = config.validate_every
if val_on == "steps":
callbacks_args = {"every_n_train_steps": n}
trainer_args = {"val_check_interval": n}
elif val_on == "epochs":
callbacks_args = {"every_n_epochs": n}
trainer_args = {"check_val_every_n_epoch": n}
else:
raise ValueError
callbacks: List[pl.Callback] = [ # type: ignore
ModelCheckpoint(
monitor=config.monitor_name,
mode="max",
save_last=True,
save_top_k=5,
filename=f"epoch={{epoch}}-step={{step}}-val_opt_acc={{{config.monitor_name}:.6f}}",
auto_insert_metric_name=False,
# save_on_train_epoch_end=False,
**callbacks_args,
),
# LearningRateMonitor(logging_interval="step"),
]
loggers: List[Logger] = [
TensorBoardLogger(
save_dir=Path(log_dir),
name=None,
version=run_name,
),
]
if playground:
pass
# callbacks.append(RichProgressBar())
else:
wandb_logger = WandbLogger(
save_dir=Path(log_dir),
name=run_name,
project=wandb_project,
entity=wandb_entity,
tags=[exp_name],
)
# wandb_logger.experiment.config["exp_group"] = f"{exp_tag}_{full_spec}"
loggers.append(wandb_logger)
wandb.init(
dir=Path(log_dir),
name=run_name,
project=wandb_project,
entity=wandb_entity,
tags=[exp_name],
)
wandb.save(str(config_path))
wandb.Table.MAX_ARTIFACTS_ROWS = 10000000
if backup_path is not None:
wandb.save(str(backup_path))
wandb_logger.experiment.config.update(
transform_dict(dataclasses.asdict(config))
)
trainer = pl.Trainer(
accelerator="auto",
# accelerator="cpu",
devices=1,
max_epochs=config.epochs,
log_every_n_steps=1,
callbacks=callbacks,
logger=loggers,
**trainer_args,
**config.trainer_args,
)
attack_driver = config.attack_driver_factory(config)
datamodule = attack_driver.get_datamodule()
trainer.validate(attack_driver, datamodule)
trainer.fit(attack_driver, datamodule)
print("Val: Best model")
trainer.validate(attack_driver, datamodule, ckpt_path="best")
print("Val: Last model")
trainer.validate(attack_driver, datamodule, ckpt_path="last")
print("Test: Best model")
trainer.test(attack_driver, datamodule, ckpt_path="best")
print("Test: Last model")
trainer.test(attack_driver, datamodule, ckpt_path="last")
# fmt: off
@cli.command()
@click.option("--config_path", type=click.Path(path_type=Path), required=True)
@click.option("--log_dir", type=click.Path(path_type=Path), required=True)
@click.option("--job_id_min", type=int, default=0)
@click.option("--job_id_max", type=int, default=-1)
# fmt: on
def test(
config_path: Path,
log_dir: Path,
job_id_min: int,
job_id_max: int,
):
# job id min / max is inclusive...
torch.set_float32_matmul_precision("high")
exp_path = config_path.parent
exp_name = exp_path.name
print(f"Experiment {exp_name}")
print(f"Loading config from {config_path}")
configs = load_config_list(config_path)
if job_id_max == -1:
job_id_max = len(configs) - 1
for run_name, cfg_gen in configs[job_id_min : job_id_max + 1]:
config = cfg_gen()
print(f"Run {run_name}")
seed_everything(config.seed)
print("Dumping config:")
print(config)
callbacks: List[pl.Callback] = [RichProgressBar()]
loggers: List[Logger] = [
TensorBoardLogger(
save_dir=Path(log_dir),
name=None,
version=f"test_{run_name}_{time.time()}",
),
]
trainer = pl.Trainer(
accelerator="auto",
devices=1,
callbacks=callbacks,
logger=loggers,
**config.trainer_args,
)
if config.load_checkpoint_from_path is not None:
attack_driver = config.load_attack_driver_from_checkpoint(
config.load_checkpoint_from_path
)
else:
attack_driver = config.attack_driver_factory(config)
datamodule = attack_driver.get_datamodule()
output = trainer.test(attack_driver, datamodule)
with open(Path(log_dir) / f"test_{run_name}.pkl", "wb") as handle:
pickle.dump(output, handle, protocol=pickle.HIGHEST_PROTOCOL)
if __name__ == "__main__":
cli() # type: ignore